Series F4S/D

User's Manual

96mm x 96mm Ramping Controller (1/4 DIN) with Guided Setup and Programming

1241 Bundy Boulevard, Winona, Minnesota USA
Phone: +1 (507) 454-5300, Fax: +1 (507) 452-4507 http://www.watlow.com

C ϵ

About Watlow Winona

Watlow Winona is a division of Watlow Electric Mfg. Co., St. Louis, Missouri, a manufacturer of industrial electric heating products since 1922. Watlow begins with a full set of specifications and completes an industrial product that is manufactured in-house, in the U.S.A. Watlow products include electric heaters, sensors, controllers and switching devices. The Winona operation has been designing solid-state electronic control devices since 1962, and has earned the reputation as an excellent supplier to original equipment manufacturers. These OEMs and end users depend upon Watlow Winona to provide compatibly engineered controls that they can incorporate into their products with confidence. Watlow Winona resides in a 100,000-squarefoot marketing, engineering and manufacturing facility in Winona, Minnesota.

About This Manual

The Series F4 User's Manual covers hardware and software in both the SingleChannel and Dual-Channel controllers. Instructions and illustrations pertain to both unless otherwise specified. If a given feature or parameter operates on only the Single or the Dual Channel controller, it will be identified by an icon in the margin or nearby.

Your Comments

Your comments or suggestions on this manual are welcome. Please send them to the Technical Literature , Watlow Winona, 1241 Bundy Boulevard, P.O. Box 5580, Winona, Minnesota, 55987-5580 U.S.; Telephone: +1 (507) 454-5300; fax: +1 (507) 452-4507.
Copyright July 2002 by Watlow, Inc., with all rights reserved. (2249)

Series F4S/D: Table of Contents

Introduction
Chapter 1: Introduction 1.1
Chapter 2: Keys, Displays and Navigation 2.1
Operations
Chapter 3: Operations 3.1
Profiles
Chapter 4: Profile Programming 4.1
Setup
Chapter 5: Setup 5.1
Chapter 6: Features 6.1
Chapter 7: Communications 7.1
Factory
Chapter 8: Security and Locks 8.1
Chapter 9: Calibration 9.1
Chapter 10: Diagnostics 10.1
Installation and Wiring
Chapter 11: Installation 11.1
Chapter 12: Wiring 12.1
Appendix
Glossary A. 2
CE Declaration of Conformity A. 5
Product Specifications A. 6
Ordering Information A. 7
Index A. 8
List of Figures A. 13
Software Map A. 16

Safety Alert
CAUTION or WARNING

Electrical Shock Hazard

CAUTION or
WARNING

Safety Information in this Manual

Note, caution and warning symbols appear throughout this book to draw your attention to important operational and safety information.
A "NOTE" marks a short message to alert you to an important detail.
A "CAUTION" safety alert appears with information that is important for protecting your equipment and performance.
A "WARNING" safety alert appears with information that is important for protecting you, others and equipment from damage. Pay very close attention to all warnings that apply to your application.

The $₫$ symbol (an exclamation point in a triangle) precedes a general CAUTION or WARNING statement.

The symbol (a lightning bolt in a lightning bolt in a triangle) precedes an electric shock hazard CAUTION or WARNING safety statement.

Technical Assistance

If you encounter a problem with your Watlow controller, review all configuration information to verify that your selections are consistent with your application: inputs; outputs; alarms; limits; etc. If the problem persists after checking the above, you can get technical assistance by calling your local Watlow representative (see back cover of this manual), or in the U.S., dial +1 (507) 494-5656. For technical support, ask for an Applications Engineer.
Please have the following information available when you call:

- Complete model number
- All configuration information
- User's Manual
- Diagnostic menu readings

Warranty

The Watlow Series F4 is warranted to be free of defects in material and workmanship for 36 months after delivery to the first purchaser for use, providing that the units have not been misapplied. Since Watlow has no control over their use, and sometimes misuse, we cannot guarantee against failure. Watlow's obligations hereunder, at Watlow's option, are limited to replacement, repair or refund of purchase price, and parts which upon examination prove to be defective within the warranty period specified. This warranty does not apply to damage resulting from transportation, alteration, misuse or abuse.

Returns

- Call or fax your distributor or the nearest W atlow sales office for best information about returns. (See outside back cover.)
- To return directly to Watlow Winona in the U.S., first call or fax Customer Service for a Return Material Authorization (RMA) number (telephone: +1 (507) 454-5300; fax: +1 (507) 452-4507).
- Put the RMA number on the shipping label, along with on a written description of the problem.
- A restocking charge of 20% of the net price is charged for all standard units returned to stock. Returned units must be in like new condition and must be returned within 120 days of initial receipt of the product.

Chapter One: Introduction

Overview

Watlow's Series F4 1/4 DIN industrial ramping controllers are easy to set up, program and operate in the most demanding ramp-and-soak-processing applications. The F4 includes:

- four-line, high resolution LCD display
- guided setup and programming software
- 16-bit microprocessor
- 256 possible ramp steps in as many as 40 vari-able-length, nameable profiles
- six step types
- eight programmable event outputs, compressor control, boost heat/boost cool, power-out selections and a real-time clock.
- Note: the F4S has two less analog inputs and two less control outputs than the F4D.

Inputs and Outputs

Figure 1.1a — Single-Channel Series F4 (F4S_- _ _ _ - _ _ _ _) Inputs and Outputs.

Sample Application: Environmental Testing with a Dual Channel F4 Using Multiple Inputs and Outputs

Overview

Andy, an engineer with the Ajax Testing Company, is running temperature and humidity tests on navigational equipment. He wants to be able to control temperature and humidity in the environmental chamber, and monitor the temperature of the equipment itself. With the Watlow Series F4 ramping controller, he can:

- program the test as a ramping profile and control it remotely;
- use boost heat and cool to maintain precise temperatures;
- record the equipment temperature on a chart recorder;
- notify the operator with a bell if process temperatures do not follow the profile;
- pause the profile if someone opens the chamber door during the test;
- set up communications with a PC later.

5. Run the Profile

Andy pressed the Profile Key and selected the test profile. He monitored the progress of the test on the display and the equipment temperature on the chart recorder.

See the Operations Chapter.

Figure 1.2 - Sample Application 1: Series F4 Dual Channel Using Multiple Inputs and Outputs.

2. Set up the F4

After checking the navigation instructions in the user manual, Andy went to the Setup Page of the software to configure the controller for the equipment and the ramping profiles. He named the alarm to make it easier to identify an alarm condition. The alarm message will appear on the Lower Display, which also informs about the progress of the test.

See the Keys, Displays and Navigation Chapter. See the Setup Chapter.

3. Customize and Name

Andy customized the Main Page so he could tell the status of the digital outputs by glancing at the controller's Lower Display (Setup Page > Custom Main Page Menu).

He also named one of the Alarms "TEMP DEV", which will make it easy to identify the alarm condition (Setup Page > Alarm Output $1 \mathrm{Menu})$. Three digital inputs, two alarms and eight digital outputs can be given 10 character names.

See the Setup Chapter.

4. Program the Profile

Andy programmed the test as a ramping profile of 21 steps. To make sure the equipment is at the ambient chamber temperature, he put a Wait condition on Step 2. Step 20 is a Jump step that puts the equipment through the same heat and humidity cycle 21 times.

See the Profile Programming Chapter.

\checkmark NOTE:
The profile in this sample application is embedded in the Series F4 software for use as a teaching tool or a template. It is the first profile, MILSTD810D, located in the Profiles Page > Edit Profile Menu. You can change or delete this profile and later recall it through factory defaults. If you have a single-channel controller, you will see only the temperature on Channel 1. This is not the true Military Standard Test 810D.

This sample application is continued in the Operations, Profile Programming and Setup Chapters.

Setup Steps

- If the Series F4 is an independent unit, start with Step 1 below.
- If the Series F4 is already installed in and set up for a piece of equipment, proceed to Steps 4, 5,6 and 7 below.

What to do

- If the Series F 4 is already installed in a piece of equipment and the setup and profile programming functions are locked, proceed directly to Step 5 or 7 .

How to do it

See Chapter 11, Installation. (This step will not be necessary if the Series F4 is already installed in equipment.)

See Chapter 12, Wiring. (This step will not be necessary if the Series F4 is already installed in equipment.)

Learn to navigate the software in Chapter 2, Keys, Displays and Navigation, and then go to Chapter 5, Setup. For background, you may also want to refer to Chapter 6, Features. (This step may not be necessary if the Series F4 is already installed in the equipment.)

4
Tune the system and set alarm set points. See Chapter 3, Operations.

5 Set up serial communications.
6 Program a profile.

Run the profile (or establish a set point for static set point control).

The 9 Key

During all these steps, the Information Key will summon helpful definitions and setup tips. Just position the cursor next to the item you want to know more about, then press the key. Press it again to return to your task.

Chapter Two: Keys, Displays \& Navigation

Displays and Indicator Lights 2.2
Custom Main Page 2.3
Keys and Navigation 2.4
Guided Setup 2.5
How to Enter Numbers and Names 2.6
© Information Key Answers Your Questions 2.7
Main Page Parameter Table 2.8

Overview

This chapter introduces the user interface of the Series F4S/D controller - the displays, keys and indicator lights, and the principles of navigating the software to program profiles and change setup settings. The Series F4 is designed with userfriendly features to facilitate setup, programming and operation of the Series F4.
The four-line LCD display facilitates setup and programming, and presents informative messages about status, error and alarm conditions.
Digital inputs, digital outputs, profiles and alarms can be named for easy reference.

The Information Key summons information about the pages, menus, parameters and values, as well as error and alarm conditions if they occur.
The software is organized into five pages of menus. The Main Page gives access to the other four Operations, Profiles, Setup and Factory. The Main Page can be customized to display user -chosen information.

Displays and Indicator Lights

Figure 2.2 - Series F4S/D Displays and Indicator Lights. (F4D shown)

Custom Main Page

The first and central page on the Lower Display is the Main Page, which shows error messages, input, output and profile status, and allows access to controller software (Go to Operations, Profiles, Setup and Factory).
The Main Page can be customized to display cho-
sen information. (To do so, go to the Setup Page, Custom Main Page Menu. See Chapter 5, Setup, for instructions.)
The following parameters will appear by default on the Main Page, unless the Main Page has been customized.

Will always appear if active:

Will appear if active and if set up to appear:

Will appear if active and selected to appear:

Will appear by default: (Profile information will appear by default if a profile is running.)

Will always appear unless customized:

Figure 2.3 — Default Main Page Parameters.

Keys and Navigation

Figure 2.4 - Series F4 Keys and Navigation.

Guided Setup

In most F4 menus, setup and programming tasks are guided. For example, once you select Analog Input 1 on the Setup Page, all parameters necessary to configure that input are linked:

1. Use \triangle to move the cursor to select an item in a list.
2. Press the Right Key \boldsymbol{D}.
3. Enter the value and make a choice.
4. Press again.
5. Repeat until you return to the original list.
(D) saves the value and proceeds to the next parameter in the series.
(1) saves the value and backs out of the series, and returns to the Main Page.
For initial setup and programming, we recommend that you answer all the questions in the series, entering values for all linked parameters and pressing until you return to your starting point.
To edit a parameter, proceed through the series without changing values until you find the parameter you want to change. After making the change, you may back out or proceed to the end of the series.

$\boldsymbol{\sim}$ NOTE:

The Edit PID Menu (Operations Page) presents lists of parameters that can be entered and edited individually. Press either or to enter the value and return to the list.
$\boldsymbol{\sim}$ NOTE:
Make sure your setup is complete before entering profiles. Certain analog input setup changes will delete profiles.

```
Main Page
```

\qquad

```
    Go to Operations
    Go to Profiles
>Go to Setup
``` \(\theta\)
```

Choose to Setup:

```
\(\qquad\)
``` >Control Output 1A Control Output 1B■ Control Output 2AV
```

```
Choose Function:
```

\qquad

```
>Heat
    Cool
```

```
Choose Cycle Time:__ \
>Variable Burst
        Fixed Time
Enter Hi Power Limit
        100%
\Delta\nabla Adjusts Value
    < Back > Next
Enter Lo Power Limit ©
        0%
\Delta\nabla Adjusts Value
    < Back > Next
```

```
Choose to Setup:
>Control Output 1A\triangle
    Control Output 1B■
    Control Output 2AV
```

```
Save setup changes
or restore values?
    \nablaRestore \triangleSave
```


How to Enter Numbers and Names

Many parameters require users to enter a numerical value. Alarms, digital inputs, digital outputs and profiles can be customized with easily recog-
nized names, such as TOO HOT for an alarm, DOOR OPEN for a digital input and GLAZE 6 for a profile.

Figure 2.6 - How to Enter Numbers and Names. (F4D shown)

(i) Information Key Answers Your Questions

There's a wealth of information about features and parameters right in the Series F4 controller. Use the Information Key to get this information.

1. Use the four navigation keys ($\left.\begin{array}{cccc}\boldsymbol{0} & \boldsymbol{O} & \boldsymbol{0} & \boldsymbol{0}\end{array}\right)$ to position the cursor ($>$) next to the parameter you want to know more about.
2. Press the 9 key. The displayed information will assist you during setup and operation. When information takes more than four lines, the scroll bar will be filled or weighted at the end, directing you to press $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$ to see the rest.
3. Press (1) again to return to your task.

Toggle the Information Key (0 between the parameter you need to know about and its functional definition.

The second press takes you back to where you were.

The scroll bar indicates more information above or below; use the $\mathbf{0}$ and $\boldsymbol{0}$ keys.

Figure 2.7 - The Information Key. (F4D shown)
Parameter Description

Range
(Modbus Value)

Modbus
Register read/write [I/O, Set, Ch]

Conditions for Parameters to Appear

Main Page

Main > Setup > Main Page
Input x (1 to 3) Error
Alarm x (1 to 2) Condition
Autotuning Channel x (1 or 2)

Parameter x (1 to 16)
View customized parameter list.

Non
Input 1 Value
Input 2 Value Input 3 Value
Set Point 1
Set Point 2
\% Power 1
\% Power 2
Tune status 1
Tune status 2
Time
Date
Digital Ins
Digital Outs
Time Remaining
Current File
Current Step
Active Ch1 PID Set
Active Ch2 PID Set
Last Jump Step
Jump Count
WaitFor Status
Step Type
Target SP1
Target SP2
Inner Set Point
Custom Message 1
Custom Message 2
Custom Message 3
Custom Message 4
Input 1 Cal. Offset
Input 2 Cal . Offset
Input 3 Cal. Offset

Go to Operations

Auto-tune PID sets, edit PID parameters and select alarm set points.

Go to Profiles

Create, edit, delete and rename profiles.

Go to Setup

Set up inputs and outputs, configure the system and design the Main Page.

Go to Factory

Set security settings, and calibrate and restore factory settings.

Current File
Current Step
Input 2 value
Set Point 1
Set Point 2
Step Type
Target SP1
Target SP2
Wait for
Status
Time
Remaining
Digital Ins
Digital Outs*
\% Power 1
\% Power 2
Date
Time
*Digital outputs configured as events can be turned on / off in the static set point mode or when a running profile is on hold. The event output status will remain as set until reset by the profile or by the operator.

Chapter Three: Operations

Static Set Point Control 3.1
Profile Control 3.2
Alarm Set Points 3.4
Clearing Alarms and Errors 3.4
Auto-tune PID 3.4
Edit PID 3.4
Multiple PID Sets 3.5
Cascade 3.6
Sample Application 3.7
Troubleshooting Alarms and Errors 3.8
Operations Page Map 3.10
Operations Page Parameter Table 3.11
Operations Page Parameter Record 3.15

Series F4S/D Operation

The Series F4S/D controller can function as either a static set point controller or as a profile controller. The information shown on the Lower Display during operation (the Main Page) is programmable and can be customized to support both modes of operation. (See Setup Page.)
In either the static set point mode or the profile mode, the Series F4 can only be operated in a closed-loop configuration. Manual operation (openloop) mode is not allowed.

Static Set Point Control

The Series F4 is in static mode when it is not controlling a ramping profile. When in static mode:

- The Profile Indicator Light is off.
- The Upper Display shows the actual process temperature of input 1, 2 or 3 depending upon Setup Page configuration.

\checkmark NOTE:

All control activity stops when you enter the Setup Page, Analog Input, Digital Input, Control Output, Alarm Output, Retransmit, and Digital Output menus.

- The Lower Display shows the default or userconfigured information set. See the Setup Chapter for instructions in programming the Main Page to display the information you want.

To operate the Series F4 as a static set point controller, use the navigation keys ($\boldsymbol{0} \boldsymbol{O} \boldsymbol{O}$) to select the preferred channel and adjust the set point.

```
Static Set Point1
            OF
\Delta\nabla Adjusts Value
    < Back > Next
```

Limits may be placed on the set point in the Set Point Low Limit and Set Point High Limit parameters (Setup Page > Analog Inputx).

Setting the set point to Set Point Low Limit minus 1 (-1) will turn control Output 1 off and display the set point as off.

```
Static Set Point1
    OFF
\Delta\nabla Adjusts Value
    < Back > Next
```


Profile Control

The main purpose of the Series F4 is to control profiles for ramp-and-soak-processing applications. The instructions below explain how to use an existing profile. To program a profile, see Chapter 4, Profile Programming.

To Start/Run a Profile

To initiate the profile mode, press the Profile Key and answer the questions that follow.
While running a profile, the Profile Status message on the lower display will keep you informed about the progress of the profile. For example, it could read like the screen at right:

$\boldsymbol{\nu}$ NOTE:

As a protective measure, all stored profiles will be cleared if you enter the Setup Page and change values in the Analog Input 1, 2, 3 menus -specifically, the Sensor, Sensor Type, Decimal, Scale (for process inputs), and Set Point High and Low Limits. Pop-up messages will warn that the profiles will be erased from the controller's memory.

- NOTE:

You must configure the software for your inputs and outputs before programming a profile. See the Setup Chapter.

$\boldsymbol{\sim}$ NOTE:

You must program a profile or use the pre-programmed MILSTD810D profile before running it. See the Profile Programming Chapter.

WARNING

Check the configuration of the controller on the Setup Page before starting and running a profile (if the Setup Page is not locked). Make sure the settings are appropriate to the profile: input sensor ranges and limits, digital inputs and outputs as events, guaranteed soak band, response to power out and Celsius or Fahrenheit scales. If the Setup Page is accessible, failure to check the configuration before running a profile could result in damage to equipment and/or property, and/or injury or death to personnel.

```
Start Profile:
    MILSTD810D..........
    ALUMINUM
>G1aze 8
```

Start:
Step 1 Autostart
>Step 2 Ramp Time
Step 3 Ramp Time
G1aze 8 Running.
Step 2
Remain 00:10:30

$\boldsymbol{\sim}$ NOTE:

While a profile is running, the controller will not recognize digital inputs that are programmed to start a profile. Such digital inputs will be recognized only while the controller is in the static set point mode.
$\boldsymbol{\sim}$ NOTE:
While a profile is running, profiles can be either created or renamed only while a profile is running. All other pages and menus can be entered only during Static Set Point Control mode.

To Hold a Running Profile

1. Press the Profile Key while running a profile. The Profile Action Menu appears.
2. Choose to Don't Hold, Hold or Terminate the profile. (Default is to Don't Hold.) If you choose to hold the profile, the Main Page reappears, and the Profile Status message reads "Profile X holding." The Profile Indicator Light is off.

If you do not make a choice when the Profile Action Menu appears, the profile continues running and the profile indicator light stays on.

```
Hold Profile:
    Don't Hold
>Hold
    Terminate
```


\checkmark NOTE:

While profiles are on hold, the step set point value can be adjusted using the Static Set Point parameter on the Main Page.

To Resume a Profile on Hold

1. Press the Profile Key while a profile is holding. The Resume Profile Menu appears.

2. Choose to Continue Holding, Resume or Terminate the profile.

If you do not make a choice, the profile continues holding and the Profile Indicator Light stays off.

```
Resume Profile:
>Continue Holding
    Resume
    Terminate
```


\checkmark NOTE:

When a profile is resumed during a Ramp step, the controller uses the Static Set Point from the Main Page to calculate the rate of change needed to get to the set point at the end of the step. When a profile is resumed in a soak step, the new set point value will be used as the soak value for the time remaining in the step.

To Terminate a Running/Holding Profile

1. Press the Profile Key while a profile is running. The Profile Action Menu appears.
2. Choose to Continue, Hold or Terminate the profile. (Default is to Continue.) If you choose to terminate, the profile ends with all outputs off. The set point on the Main Page reads off.
If you do not make a choice when the Profile Action Menu appears, the profile continues as it was running or holding.
```
Hold Profile:
    Don't Hold
    Hold
>Terminate
```

$\boldsymbol{\sim}$ NOTE:
The Profile Status message takes precedence over all other information except errors, alarm messages and input status. Errors and alarm messages always take precedence over Profile Status.

The Profile Key:

- initiates the ramping profile mode;
- initiates the Hold-profile state;
- initiates the Resume-profile command;
- initiates the Terminate-profile command.

The Profile Key functions only from the Main Page. It will not function from any of the other pages - Operations, Profile, Setup or Factory.

Alarm Set Points

The Series F4 includes two alarm outputs, which can be programmed as process or deviation alarms.
Process alarms notify the operator when process values exceed or fall below Alarm Low and Alarm High Set Points. Deviation alarms notify the operator when the process has deviated from the set point beyond the deviation limits. For more information, see the Features Chapter. To set up the alarms, see the Setup Chapter.
Alarm set points are the points at which alarms switch on or off, depending on the alarm setting. Alarm set points can be viewed or changed in the Alarm Set Point Menus (Operations Page).
The Alarm High Set Point defines the high temperature that, if exceeded, will trigger an alarm. This temperature must be higher than the alarm low set point and lower than the high limit of the sensor range.
The Alarm Low Set Point defines the low temperature that, if exceeded, will trigger an alarm. This temperature must be lower than the alarm high set point and higher than the low limit of the sensor range.
$\boldsymbol{\sim}$ TIP:
You may want to set up the alarms with names that will identify the alarm conditions. See the Setup Page.

To Clear an Alarm or Error

In an alarm condition, an alarm message will appear on the Main Page (if this option has been selected on the Setup Page). To silence it, move the cursor to the alarm message and press the Right Key \boldsymbol{D}. A pop-up message will confirm the silencing of the alarm, and the indicator light will go off.
When the condition causing the error or alarm is corrected, return to the error or alarm message on the Main Page, and press the Right Key again. A pop-up message confirms the alarm is unlatched.

Auto-tune PID

In autotuning, the controller automatically selects the PID parameters for optimal control, based on the thermal response of the system. In the Series F4, five sets of PID values are available for each channel of the controller: sets 1 to 5 for channel 1 , and sets 6 to 10 for channel 2. Default PID values exist for all PID sets, although these values typically do not provide optimal control. PID values can be auto-tuned or adjusted manually. When autotuning is complete, the PID values will be stored in the Edit PID Menu.
\checkmark NOTE:
PID Set 1 for Channel 1 and PID Set 6 for Channel 2 are used in the Static Set Point mode.

Autotuning Procedure

Autotuning cannot be initiated while a profile is running. It can only be initiated in the static set point control mode.

1. Before initiating auto-tune, go to the System Menu (Setup Page), and set the Channel 1 or 2 Autotune Set Point to the percentage of set point you choose to begin with. This percentage is based on your knowledge of the system and how much overshoot or undershoot there is likely to be in on-off control.

In the Custom Main Page, select to display Tune Status 1 and Tune Status 2. This displays Tune Status in the Main Page.
2. Go to the Main Page and set the static set point.
3. Go to the Autotune PID Menu (Operations Page) and choose the channel to auto-tune and the PID set in which to store the settings. A message will be displayed on the Main Page during the autotuning process. (Auto-tune cannot be initiated when a profile is running. It can only be initiated in the static set point mode.)
4. When autotuning is complete, the controller will store the values for optimum control in the PID set specified.
$\boldsymbol{\sim}$ NOTE:
While the controller is autotuning, profiles cannot be run and only the Profiles Page and Operation Page of the software can be entered.

CAUTION: Choose an auto-tune set point value that will protect your product from possible damage from overshoot or undershoot during the autotuning oscillations. If the product is sensitive, select the auto-tune set point very carefully to prevent product damage.
For additional information about autotuning and proportional, integral and derivative control, see the Features Chapter.

Edit PID

Edit PID is useful when Auto-tune PID does not provide adequate control. Each of the PID parameters can be adjusted manually:
Proportional Band: Define a band for PID control, entered in degrees or units. Lower values increase gain, which reduces droop but can cause oscillation. Increase the proportional band to eliminate oscillation.

Integral (Reset): Define the integral time in minutes per repeat; define reset in repeats per minute. Set repeats per minute if units are U.S.; minutes per repeat if units are SI.
Derivative (Rate): Define the derivative (rate) time in minutes. Large values prevent overshoot but can cause sluggishness. Decrease if necessary.
Dead Band: Define the dead band in degrees or units. Heating dead band shifts the set point down. Cooling dead band shifts the set point up. For more information, see the Features Chapter.

Manual Tuning Procedure

1. Apply power to the Series F4 and enter a set point. Go to the Operations Page, Edit PID Menu and begin with Proportional Band set to 5; Integral (Reset) set to 0; Derivative (Rate) set to 0; and Autotune set to Tune Off.
2. Start manual tuning by entering the desired set point and let the system stabilize. Once the system stabilizes, observe the value of Input 1 on the Main Page. If the Input 1 value fluctuates, increase the proportional band setting until it stabilizes. Adjust the proportional band in 5° to 10° increments, allowing time between adjustments for the system to stabilize.
3. Once Input 1 has stabilized, observe the percent power on the Main Page. It should be stable, $\pm 2 \%$. At this point, the process temperature should also be stable, but it will exhibit droop (stabilized below set point). The droop can be eliminated with reset or integral.
4. Start with a reset setting of 0.01 , and allow 10 minutes for the process temperature to come up to set point. If it has not, increase the setting to 0.05 and wait another 10 minutes. After this, double the reset setting and wait another 10 minutes until the process value equals the set point. If the process becomes unstable, the reset value is too large. Decrease the setting until the process stabilizes.
5. Increase Derivative/Rate to 0.10 minute. Then raise the set point by 20° to $30^{\circ} \mathrm{F}$, or 11° to $17^{\circ} \mathrm{C}$. Observe the system's approach to the set point. If the load process value overshoots the set point, increase Derivative/Rate to 0.50 minute.

Raise the set point by 20° to $30^{\circ} \mathrm{F}$, or 11° to $17^{\circ} \mathrm{C}$ and watch the approach to the new set point. If you increase Derivative/Rate too much, the approach to the set point will be very sluggish. Repeat as necessary until the system rises to the
new set point without overshooting or approaching the set point too slowly.
For additional information about manual tuning and proportional, integral and derivative control, see the Features Chapter.

Multiple PID Sets

Environmental chambers, ovens and furnaces typically have different thermal requirements when they operate at high and low temperatures or pressures. To accommodate varying thermal requirements, the F4 is capable of storing five different PID sets for each channel. One set for each channel can be chosen in each profile step.
For example, a controller in an environmental chamber with PID settings optimized for control at subzero temperatures may not control well when the set point is set to temperatures above the boiling point of water. With the F4, one PID set could be used for subzero operation and another set for temperatures above boiling.

Multiple Tuning Procedure

1. To auto-tune a single PID set, begin by setting the static set point on the Main Page.
2. Go to the Autotune PID Menu (Operations Page), and choose a channel and a set. Autotuning begins when you select the set. The Main Page displays information about the autotuning process when Tune Status is selected in the Custom Main Page.
3. When autotuning is finished, proceed with another PID set.
In the example above, the user would first autotune a PID set for subzero operation, and then another for operation at boiling temperatures. When programming a profile, the user could then select a different PID set for each step, depending on the thermal requirements.

\checkmark NOTE:

Autotuning cannot be done while running a profile. It can only be initiated when the controller is in the Static Set Point Control mode.

Cascade

Cascade control is available on the Series F4 controllers. For background information about cascade control, see the Features Chapter.
Select cascade control through the Analog Input 3 Menu (Setup Page) and choose Process Cascade or Deviation Cascade. To set the range for the Process Cascade Inner Loop set point, use Low and High Range settings. These are independent of the Channel 1 set point. Deviation Cascade uses Deviation Low and High settings that are referenced to the Channel 1 set point.
Deviation Cascade is used in applications with large set point ranges or where limiting heating or cooling equipment temperatures is required.
When tuning a cascade system, the inner loop must be tuned first. The inner loop comprises outputs 1A and 1B and the Analog Input 1 sensor, which usually measures the energy source temperature. The output device controls a power switching device, which in turn switches the heating and cooling. The set point for the inner loop is generated by the outer loop. For Process Cascade, this will have a range between the Cascade Low Range and Cascade High Range.

Cascade Setup Procedure

1. First, configure Analog Input 3, Cascade Low Range and Cascade High Range.
Go to the Analog Input 3 Menu (Setup Page). Choose Process or Deviation Cascade. Deviation Cascade references Channel 1 set point allowing a range above and below the current control set point. For Process Cascade control of a heat/cool or cool only system, set the Cascade Low Range to a value slightly lower than the lowest temperature desired in the chamber. For heat-only systems, set the Cascade Low Range to a value slightly lower than the ambient temperature; otherwise the heat output will never turn fully off.
For heat/cool or heat only systems, set the Cascade High Range to a value slightly higher than the highest temperature desired in the chamber. For cool-only systems, set the Cascade High Range to a value slightly higher than the ambient temperature; otherwise the cooling will never fully turn off.
2. Next, configure the controller to tune and display data for the outer loop. To view Inner Loop Set Point in the upper display, go to the Setup Page, Custom Main Page Menu, select the Inner Set point as one of the parameters, P1 to P16, to be displayed in the Main Page.
To also view Analog Input 3 in the upper display, go to the Setup Page, Process Display Menu, and choose Alternating. Under Set Display Time, choose a duration for the display of the Input 1 and Input 3 variables.

Cascade Autotuning Procedure

1. Go to Setup Page, Custom Main Page Menu. Choose Tune Status 1 and Tune Status 2 to appear as 2 of the 16 parameters that can be displayed on the Main Page. The Main Page will now display the status of the autotuning process.
2. Autotune the inner loop. Go to the Autotune PID Menu (Operations Page), and select Cascade In-ner-loop. Choose Cascade Inner Loop PID Set 1 to 5 , where PID values will be stored after autotuning. Autotuning begins when you choose the PID set. While autotuning, the F4 controller will control the energy source in an on-off mode to a temperature equal to the Cascade High Range setting x Channel 1 Autotune Set Point. For best results, use proportional control only on the inner loop.
3. Next, autotune the outer loop. Go to the Autotune PID Menu (Operations Page). Choose Cascade Outer Loop, then choose Outer Loop PID set 1 to 5 , where PID values will be stored after autotuning. Autotuning begins when you choose the PID set. While autotuning, the outer loop will be controlled in an on-off mode at a set point equal to static set point x Ch 1 Autotune Set Point. In most cases, the autotuning feature will tune for acceptable control. If not, manually tune the outer loop (step 4 below). Before manually tuning, record the values generated by the autotuning feature.
4. To manually tune the outer loop, go to the Edit PID Menu (Operations Page). Choose Cascade Outer Loop, then choose Outer Loop PID set 1 to 5. Begin manual tuning by setting the Proportional Band to 5, Integral (Reset) to 0, and Rate to 0 . Establish the desired set point and let the system stabilize. When the system stabilizes, watch the Inner Loop Set Point on the Main Page. If this value fluctuates, increase the proportional band until it stabilizes. Adjust the proportional band in 3° to 5° increments, allowing time for the system to stabilize between adjustments.
5. When Input 1 has stabilized, watch the percent power on the Main Page. It should be stable, $\pm 2 \%$. At this point, the process temperature should also be stable, but it will exhibit droop (stabilized below set point). The droop can be eliminated with Integral (reset).
6. Start with an integral setting of 99.9 minutes, and allow 10 minutes for the process temperature to come up to set point. If it has not, decrease the setting by half and wait another 10 minutes. Then halve the setting again and wait another 10 minutes until the process value equals the set point. If the process becomes unstable, the integral value is too small. Increase it until the process stabilizes.

Sample Application:

Environmental Testing, Running a Profile
 RUN

Andy, an engineer with the Ajax Testing Company, is running temperature and humidity tests on navigational equipment. He runs the test profile, Military Standard Test 810D, having already set up the controller and programmed the profile.
In Step 4, the temperature in the chamber exceeded the Alarm 1 setting. This triggered the alarm, causing the indicator light on the front panel (next to the bell-shaped icon) to light up and a message to appear on the lower display: "TEMP DEV High."
Because Alarm 1 was set up as a latching alarm (Setup Page), Andy had to clear it manually. First he corrected the alarm condition by widening the gap between low and high deviation alarm settings on the Operations Page. He then unlatched the alarm by returning to the Main Page alarm line and pressing the Right Key again.
If your Series F4 is a single-channel controller, you will see only the temperature on Channel 1. This is not the true Military Standard Test 810D.

\checkmark NOTE:

This profile is embedded in the Series F4 as a teaching tool and a template. Go to the Edit Profile Menu (Profiles Page) and look for MILSTD810D.

Andy presses the Profile Key © , moves the cursor to "MILSTD810D" on the Run Profile Menu, then presses the Right Key ©. He wants to begin at Step 1, so he presses 0 to select that step. The Profile Status Message (on the Lower Display) now says: "MILSTD810D Running. Step 1 Remains: XX:XX."

```
Start Profile:
>MILSTD810D..........
    ALUMINUM
    Glaze 8
```


HOLD

When the alarm occurred, Andy put the profile on hold while he corrected the Alarm Set Points.

Hold Profile: \qquad Don't Hold
$>$ Hold
Terminate

```
MILSTD810D Holding.
Step 1
Remains 00:01:40
```


RESUME

After clearing the alarm, Andy entered the command to resume the profile.

```
Resume Profile:
    Continue Holding
>Resume
    Terminate
```


Troubleshooting Alarms and Errors

Indication	Probable Cause(s)	Corrective Action
Power		
- Displays are dead.	- Power to unit may be off.	- Check switches, fuses, breakers, interlocks,
	- Fuse may be blown.	limits, connectors, etc. for energized condi- tions and proper connection.
	- Breaker may be tripped.	
	activated.	
	- Separate system limit control may be	
	latched.	
	- Wiring may be open.	
		• Mnput power may be incorrect.

Communications

- Unit will not communicate.
- Address parameter may be incorrectly set.
- Baud rate parameter may be incorrectly set.
- Unit-to-unit daisy chain may be disconnected.
- Communications wiring may be reversed, short or open.
- EIA-485 converter box may be incorrectly wired.
- Computer communications port may be incorrectly set up.
- Communications software setup or address may be incorrect.
- Protocol or parity may be wrong, should be 8, n, 1.
- Application software not working properly.
- May need termination and pull-up and pulldown resistors.
- Check Communications Setup Menu and set to correct address.
- Check Communications Setup Menu and set to correct baud rate.
- Look for a break in the daisy chain.
- Verify correct connections and test wiring paths.
- Check converter box wiring and its documentation.
- Reconfigure computer's communications port setup and verify that communications are okay.
- Check the communication card documentation for setable variables and operational testing.
- Restart communications software and check for settings agreement. Verify the communications bus is active.
- Verify operation with Watlow communications tool.

Alarms		
- Alarm won't occur.	- Alarm output may be off. - Alarm set points may be incorrect. - Alarm sides may be incorrect. - Controller may be in diagnostics mode.	- Configure output as an alarm. - Check alarm set points. - Check the alarm sides setting. - Check the alarm type setting.
- Alarm won't clear. (To clear the alarm, correct the alarm condition. If the alarm is latched, press \boldsymbol{D} with the cursor at the alarm message on the Main Page.)	- Alarm may be latched. Move cursor to alarm message. Press 0 . - Alarm set points may be incorrect. - Alarm hysteresis may be incorrect. - Input may be in error condition.	- Check the alarm logic for compatibility with system peripherals and annunciators. - Check the power limit setting. - Check the operation mode. - Check the alarm output function. - Check the ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$ setting. - Check the calibration offset value. Set it to a lower level.

Input Errors

(Upper Display shows error code for input 1 only. Lower Display shows error message. Alarm Output Indicator is lit.)

Upper R-dLO
Lower !Input x (1 to 3) AtoD -
Upper \boldsymbol{H}-dh
Lower !Input x (1 to 3) AtoD+
Upper SERLo
Lower !Input x (1 to 3) Sensor-
Upper SERH.
Lower !Input x (1 to 3) Sensor+
Upper Atod
Lower !Timeout

- Input is in error condition.
- Check sensor connections.
- Check sensor connections and sensor wiring.
- Input type may be set to wrong sensor or may not be calibrated.
- Power may be incorrect
- The open loop detect feature shows a broken sensor.
- The Calibration Offset parameter is set much too high or low.
- Check sensor connections and sensor wiring.
- Check the Sensor parameter to match the sensor hardware.
- Measure power upstream for required level. Check part number for power requirements.
- Check sensor function. The Open Loop Detect parameter indicates it may be broken.
- Check the Calibration Offset parameter value. Set it to a lower level.

System Errors

(Upper Display shows error

- Check sensor connections. numbers. Lower Display messages indicate cause and action to take.)
- Input 1 Module Error! Only single-channel modules supported.
- Input 1 Module Error! Only dual-channel modules supported.
- Retransmit 1 Module Error! Only process modules supported.
- Retransmit 2 Module Error! Only process modules supported.
- Cannot identify: Modify: Replace module.
- Module change. Defaults will occur. Accept with any key.
- First power-up. Parameters are initializing.
- Firmware change. Parameters are initializing.
- Input is in error condition.
- Input 2-3 module in input 1 slot.
- Input 1 module in input 2-3 slot.
- Wrong module in retransmit 1 slot.
- Wrong module in retransmit 2 slot.
- Component failure.
- Module changed.
- Firmware upgrade.
- Firmware upgrade.
- Move module to correct input slot.
- Move module to correct input slot.
- Replace incorrect module with retransmit module.
- Replace incorrect module with retransmit module.
- Remove the module just installed and replace with a new module.
- Press any key. All parameters will default.
- Wait until initialization is done.
- Wait until initialization is done.

Fatal Errors (Controller shuts down.)

- Checksum Error!, Parameter memory.
- Checksum Error!, Unit config memory.
- Checksum Error!, Profile mem- • Loss of power during memory setup. ory.
- RAM Test Failed! Return controller to the Factory.
- Flash Memory Failed. Return controller to the Factory.
- Loss of power during memory setup.
- Loss of power during memory setup.
- Component failure.
- Component failure, loss of power during download.
- Turn the controller off, then on again.
- Turn the controller off, then on again.
- Turn the controller off, then on again.
- Call your Watlow distributor or representative.
- Call your Watlow distributor or representative.

Operations Page Map

```
Autotune PID
    Channel 1 Autotune
        Tune Off
        PID Set 1
        PID Set 2
        PID Set 3
        PID Set 4
        PID Set 5
        Channel 2 Autotune
        Tune Off
        PID Set 6
        PID Set 7
        PID Set 8
        PID Set 9
        PID Set 10
    Channel 1 Outer Loop Autotune
        PID Set C1
        PID Set C2
        PID Set C3
        PID Set C4
        PID Set C5
Edit PID
    PID Set Channel 1
        PID Set 1-5
            Proportional Band A
            IntegralA / ResetA
            DerivativeA / RateA
            Dead Band A
            Hysteresis A
            Proportional Band B
            IntegralB / ResetB
            DerivativeB / RateB
            Dead Band B
            Hysteresis B
```


\checkmark NOTE:

Some parameters may not appear, depending on the model and configuration of the controller.

PID Set x (1 to 5)* (Optional Inner Loop)

Main > Operations > Edit PID > PID Set Channel $1>$ PID Set \mathbf{x} (1 to 5)

[^0]| Parameter Description | Range (Modbus Value) | Default | Register read/write [I/O, Set, Ch] | Conditions for Parameters to Appear |
| :---: | :---: | :---: | :---: | :---: |
| Rate x (A or B)
 Set the rate time. | 0.00 to 9.99 minutes (0 to 999) | 0.00 minutes (0) | 1 A 1 B Set
 504 554 $[1]$
 514 564 $[2]$
 524 574 $[3]$
 534 584 $[4]$
 544 594 $[5]$
 r/w | Active if PID Units (Setup Page) is set to U.S. and Proportional Band is not set to 0 . |
| Dead Band x (A or B)
 Define the effective shift in the heating and cooling set points to prevent conflict. | $\begin{aligned} & 0 \text { to } 30000 \\ & (0 \text { to } 30000) \end{aligned}$ | 0
 (0) | 1 A 1 B Set
 505 555 $[1]$
 515 565 $[2]$
 525 575 $[3]$
 535 585 $[4]$
 545 595 $[5]$
 r/w | Active if Proportional Band is not set to 0 and one output is set to heat and the other to cool (Setup Page). |
| Hysteresis $\mathbf{x}(A$ or $B)$
 Define the process variable change from the set point required to re-energize the output (in on-off mode). | $\begin{aligned} & 1 \text { to } 30000 \\ & (1 \text { to } 30000) \end{aligned}$ | $3 \text { (3) }$
 PID Set x | 1A 1B Set
 507 557 $[1]$
 517 567 $[2]$
 527 577 $[3]$
 537 587 $[4]$
 547 597 $[5]$
 r/w
 (6 to 10) | Active if Proportional Band is set to 0 and one channel is set to heat and the other to cool (Setup Page). |
| Main > Operations > Edit PID > PID Set Channel $2>$ PID Set x (6 to 10) | | | | |
| Proportional Band x (A or B)
 Set the proportional band. | $\begin{aligned} & 0 \text { to } 30000 \\ & \text { (1 to } 30000 \text {) } \end{aligned}$ | $\begin{aligned} & 25^{\circ} \mathrm{F}(25) \\ & 14^{\circ} \mathrm{C}(14) \end{aligned}$ | 2 A 2 B Set
 2500 2550 $[6]$
 2510 2560 $[7]$
 2520 2570 $[8]$
 2530 2580 $[9]$
 2540 2590 $[10]$
 r/w | Active: Always (Channel 1). |
| Integral x (A or B)
 Set the integral time in minutes. | $\begin{aligned} & 0.00 \text { to } 99.99 \text { minutes } \\ & \text { (} 0 \text { to } 9999 \text {) } \end{aligned}$ | 0 minutes
 (0) | 2A 2 B Set
 2501 2551 $[6]$
 2511 2561 $[7]$
 2521 2571 $[8]$
 2531 2581 $[9]$
 2541 2591 $[10]$
 r/w | Active if PID Units (Setup Page) is set to SI and Proportional Band is not set to 0 . |
| Reset x (A or B)
 Set the reset time in repeats per minute. | 0.00 per minute to 99.99 per minute (0 to 9999) | 0 per minute (0) | 2A 2 B Set
 2502 2552 $[6]$
 2512 2562 $[7]$
 2522 2572 $[8]$
 2532 2582 $[9]$
 2542 2592 $[10]$
 r/w | Active if PID Units (Setup Page) is set to U.S. and Proportional Band is not set to 0 . |
| Derivative x (A or B)
 Set the derivative time. | $\begin{aligned} & 0.00 \text { to } 9.99 \text { minutes } \\ & (0 \text { to } 999) \end{aligned}$ | 0.00 minutes (0) | 2 A 2 B Set
 2503 2553 $[6]$
 2513 2563 $[7]$
 2523 2573 $[8]$
 2533 2583 $[9]$
 2543 2593 $[10]$
 r/w | Active if PID Units (Setup Page) is set to SI and Proportional Band is not set to 0 . |
| Rate \mathbf{x} (A or B)
 Set the rate time. | 0.00 to 9.99 minutes (0 to 999) | 0.00 minutes
 (0) | 2A 2B Set 25042554 [6] 25142564 [7] 25242574 [8] 25342584 [9] 25442594 [10] r/w | Active if PID Units (Setup Page) is set to U.S. and Proportional Band is not set to 0 . |

Operations Page Parameter Table

Operations Page Parameter Record

Make a photocopy of this page and enter your settings on that copy .

Name \qquad

Date \qquad

PID Set Chan 1 Menu or Cascade Inner Loop	PID Set 1	PID Set 2	PID Set 3	PID Set 4	PID Set 5
Proportional Band A IntegralA / ResetA					
DerivativeA / RateA					
Dead Band A					
Hysteresis A					
Proportional Band B					
IntegralB / ResetB					
DerivativeB / RateB					
Dead Band B					
Hysteresis B					
PID Set Chan 2 Menu	PID Set 6	PID Set 7	PID Set 8	PID Set 9	PID Set 10
Proportional Band A					
Integral / ResetA					
DerivativeA / RateA					
Dead Band A					
Hysteresis A					
Proportional Band B					
IntegralB/ResetB					
DerivativeB / RateB					
Dead Band B					
Hysteresis B					
Cascade Outer Loop	PID Set 1	PID Set 2	PID Set 3	PID Set 4	PID Set 5
Proportional Band A					
Integral / ResetA					
DerivativeA / RateA					
Dead Band A					
Proportional Band B					
IntegralB / ResetB					
DerivativeB / RateB					
Dead Band B					
Alarm Set Point Menu	Alarm 1	Alarm 2			
Low Set Point					
High Set Point					
Lo Deviation					
Hi Deviation					

Notes

4

Chapter Four: Profile Programming

What is a Ramping Profile? 4.2
Step Types 4.2
Profile Plan Checklist 4.3
How to Program a New Profile 4.4
How to Edit a Profile 4.6
User Profile Record 4.7
A Sample Application 4.8
Frequently Asked Questions 4 .10
Profiles Page Map 4.11
Profiles Page Parameter Table 4 .12

Overview

This chapter explains how to program a ramp-andsoak profile so that it will be stored in the Series F4 memory.

- The first section explains profiles, steps and step types.
- The second section explains how to name and program a ramping profile. The Series F4 presents a sequence of questions that prompt you to define the steps and the step properties. While reading this section, refer to the profile already embedded in the Series F4 software. You can use this profile, Military Standard Test 810 (MILSTD 810D), as a template and learning tool.
- The third section explains how to edit and delete an existing profile. In the Series F4, you

\checkmark NOTE:

For more information about how parameter settings affect the controller's operation, see the Features Chapter.

\checkmark NOTE:

If your Series F4 is a single-channel controller, you will see only the temperature on Channel 1 of the embedded profile. This is not the true Military Standard Test 810D.
choose from a list of the steps and their parameters, much like in previous controllers.

- You will also find a User Profile Record to use to record the steps and parameters for your profiles.
If you receive this controller as a separate unit, you will have to install, wire and configure the Series F4 before you set up a ramping profile.

If you receive this controller already installed in an environmental chamber, furnace or other equipment, continue with this chapter. You will not have to configure the controller if the manufacturer has done this for you. You should check the Setup Page in the controller software for settings of relevant inputs and outputs.

\checkmark NOTE:

Make sure your controller inputs are properly configured before entering profiles. Analog Input setup changes may delete profiles.

What Is a Ramping Profile?

A ramp is a programmed change from one set point to another. A soak maintains the set point over a period of time.
A profile is a set of instructions programmed as a sequence of steps. The controller handles the profile steps automatically, in sequence. As many as 40 different profiles and a total of 256 steps can be stored in the Series F4's non-volatile memory.

The 256 steps are grouped by profile. So, one profile could have 256 steps; or 39 profiles could have 6 steps and one could have 22 ; or 32 profiles could have eight steps each. The maximum number of steps is 256 , and the maximum number of profiles is 40 .

Figure 4.2 - An eight-step profile, as it might be logged on a chart recorder.

Step Types — Building Blocks of Profiles

Six types of steps are available in the Series F4. They are the building blocks of ramping profiles.
Use the six step types to create simple or complex profiles involving all inputs and outputs. The Series F4 prompts you to define each step's properties, listed below.

- Autostart
- Ramp Time
- Ramp Rate
- Soak
- Jump
- End

Autostart

Autostart pauses a profile until the specified date or day, and time (of a 24 -hour-clock). Define the Autostart by choosing:

1. Day (of the week) or Date,
2. Time

Note: To invoke an Autostart step in a profile, you must activate the profile via the Profile Key and select the Autostart step.

Ramp Time

Ramp Time changes the set point to a new value in a chosen period of time. Ramp Time is the same for both channels of a dual-channel controller. Define the Ramp Time step by choosing:

1. Wait for an event or process value;
(Wait for Events are set up in the Setup Page.)
2. Event outputs to turn on or off (if digital outputs are set up as events in the Setup Page);
3. Time (in hours, minutes and seconds);
4. Channel 1 Set Point;
5. Channel 2 Set Point (if dual channel);
6. PID set (one of five sets of heat/cool PID parameters per channel, pre-defined in the Operations Page);
7. Guaranteed Soak (requires the actual process value to stay within the Soak Band as set in the System Menu).

Ramp Rate

Ramp Rate (for single channel only) changes the set point to a new value at a chosen rate. Define the Ramp Rate step by choosing:

1. Wait for an event or process value;
(Wait for Events are set up in the Setup Page.)
2. Event outputs to turn on or off (if digital outputs are set up as events in the Setup Page);
3. Rate (units per minute);
4. Channel 1 Set Point;
5. PID set (one of five sets of heat/cool PID parameters, pre-defined in the Operations Page);
6. Guaranteed Soak (requires the actual process value to stay within the Soak Band as set in the System Menu).

Soak

Soak maintains the set point from the previous step for a chosen time in hours, minutes and seconds. Define the Soak step by choosing:

1. Wait for an event or process value;
(Wait for Events are set up in the Setup Page.)
2. Event outputs to turn on or off (if digital outputs are set up as events in the Setup Page);
3. Time;
4. PID set (one of five sets of heat/cool PID parameters per channel, pre-defined in the Operations Page); or
5. Guaranteed Soak (requires the actual process value to stay within the Soak Band as set in the System Menu).

Jump

Jump initiates another step or profile. Define the Jump step by choosing:

1. Profile to jump to;
2. Step to jump to; and
3. Number of Repeats.

~NOTE:

If a power out condition occurs during a profile and more than 20 jump steps are stored in the F4's Profile Program memory, the controller will terminate the profile and turn off all outputs if Continue, Hold or Terminate was selected as the Power Out action. If Profile Reset or Go to Idle Set Point was selected, the controller will take those actions. A pop-up message will warn of this when the 21st jump step is programmed

End

End terminates the profile in a chosen state. All profiles must have an End step. It cannot be deleted or changed to another step type. Define the End by choosing:

- End with Hold, Control Off, All Off or Idle end state.

Another Option: Wait For

Wait For is not a step type, but Ramp Time, Ramp Rate and Soak steps can be programmed to wait for events and processes. This means the wait conditions must be satisfied before the time clock and the step activity proceeds.
If the step is to wait for an analog input, the actual
process value must arrive at or cross the specified value before the step proceeds.
Digital inputs must first be configured in the Setup Page as Wait for Events, with the condition to be met also specified. Then, to wait for this digital input, you must specify On , meaning the condition as configured in the Setup Page, or Off, meaning the opposite of that condition.

Profile Plan Checklist

1. Configure the controller (Setup Page) to provide the right foundation for the profile:

- Set the appropriate input sensor ranges and limits (Input Menus).
- Establish digital inputs and outputs as events if required (Digital Input and Output Menus).
- Set the guaranteed soak band (System Menu).
- Decide the controller response to a power-out situation (System Menu).
- Choose Celsius or Fahrenheit (System Menu) scale.
- If Setup Page values have not been recorded, note them on the Setup Page Parameter Record in the Setup Chapter.

2. Check the Operations Page:

- If defaults are not acceptable, establish PID values (through the Autotune or Edit PID Menu).
- Set the alarm set points (Alarm Set Points Menu).

3. Plan the profile on paper. The User Profile Record (later in this chapter) will give you a framework for your plan.
4. Program the profile. Make sure the User Profile Record is an accurate record of the program.

5. Store the Setup Page Parameter

Record along with the User Profile Record to document your programmed settings.

How to Program a New Profile

The Series F4 uses a question-and-answer format to prompt you to define the steps and step types of a new profile. Here's how:

1. Go to the Profiles Page.

Move the cursor to Go to Profiles (at the bottom of the Main Page), then press the Right Key \boldsymbol{D}.

2. Create a new profile.

Press 0 .

3. Name the profile.

Unless the equipment manufacturer has locked out this function, you can name your profiles for easy reference. (Names can have up to 10 characters.) To name a profile,

- Press 0 to enter the name space and the first position.
- Press the Up or Down Key 0 © to scroll through the alphabet and choose the letter or number. (See Chapter 2, Navigation, for the character selections available.)
- Press 0 to move to the next position.
- Continue until the name is complete, or until you move through the name space into the next screen.
- Enter (0) to save the name of the profile. This name will be stored in the Series F4's memory and will appear on the Main Page when you run the profile.

4. Choose the step type.

There are six step types, each of which must be defined through different parameters. (See "Step Types," earlier in this chapter.)

5. Define each step type.

The Series F4 prompts you to define the parameters of each step type. For example, when you choose Ramp Time, the Profile Guide asks:

- if you want the step to wait for an event or process input before starting;
- whether events outputs are on or off (digital outputs must be set up as events in the Setup Page);


```
Main>Profile
>Create Profile
    Edit Profile
    Delete Profile
```

```
Choose to Name:
```

\qquad

```
    No
>Yes
Enter Profile Name:_
ALUMINUM8
    \DeltaV Adjusts Char
    < Back > Next
```

```
Choose Step1 Type:
    Autostart
>Ramp Time
    Ramp Rate
```

```
Choose to wait:
```

\qquad

```
>Step does not wait
    Step waits for...
```

- how much time it will take to reach set point;
- what the set point is;
- which PID set to activate; and
- whether you want a guaranteed soak.

Continue defining step types until your profile is complete. The last step must be an End step.

```
Enter Ramp Time:
```

\qquad

``` 00:00:01 (H:M:S) マA Adjusts Digit
```


6. Choose the end-state.

All profiles end with an End step, which is preprogrammed into the new profile. Choose:

- Hold set point and event outputs;
- Control off, set point off, event output status maintained;
- All Off (control outputs and event outputs) or
- Idle, with each channel at user-specified set points. Event output status maintained.

7. Save your settings.

When exiting the Profiles Page, choose whether to save profile data \mathbf{O} or restore values $\boldsymbol{0}$.

```
Save profile data
or restore values?
    \nabla Restore A Save
```


$\boldsymbol{\sim}$ NOTE:

The final step of every profile is End. You cannot delete an End step or change it to another type, but you can insert new steps before it.

Get Information from the \boldsymbol{B} Key

If you do not know a term, press the Key when the cursor points to the word in the display text. Or check the glossary in the Appendix of this user manual.

```
i Ramp Time: A step
type that changes
the set point to a
new value in a
user-chosen period
of time.
```


How to Edit a Profile

To change one or more parameters in any step of a profile, choose Edit Profile on the Profiles Page.

1. Go to the Profiles Page.

Move the cursor to Go to Profile (at the bottom of the Main Page), then press \boldsymbol{D}.

2. Choose to edit a profile.

Press 0 .

3. Choose the profile you want to edit.

 Press 0 .
4. Choose how you change the profile.

Choose whether you want to insert a new step, edit a specific step or delete a step.

To edit a step:

- Select the number of the step you wish to edit from a list of steps and step types.
- The next screen presents a list of all possible step types. The cursor will be positioned on the current step type. To keep it, press \boldsymbol{O} and make your changes to the properties listed on succeeding screens.
- If you choose to change a Step Type, the Series F4 will prompt you to program all necessary parameters.

To insert a step:

Move the cursor to the number of the step that the new step will precede. Press D. The Series F4 will prompt you to program all necessary parameters of the new step. Inserting a step changes the numbers of all steps that follow.

To delete a step:

Move the cursor to the number of the step to be deleted. Press D. Deleting a step changes the numbers of all steps that follow.
A Jump Step that jumps to an End Step cannot be deleted.

\checkmark NOTE:

Inserting a step changes the numbers of all steps that follow.

```
Main>Profile
    Create Profile
>Edit Profile
    Delete Profile
```

```
...Edit Profile
>Glaze 42
    G1aze 43
    G1aze 56
Edit Step:
    -_---------
>Step 1 Autostart
    Step 2 Ramp Time
    Step 3 Soak
```

Choose to:

```
Choose to:
    Insert Step
    Insert Step
>Edit Step
>Edit Step
    Delete Step
    Delete Step
    ----------
```


User Profile Record

Copy this record and use it to plan profiles. Keep it with a Setup Page Parameter Record to document the controller's programmed settings.
Profile Name:
Date Programmed: \qquad
Programmed by: \qquad
Controller checked by: \qquad

m								
-		1						
				-				
-								
-								
-								

A Sample Application: Environmental Testing

Programming a Protile

This profile is embedded in the Series F4 software for use as a teaching tool and as a template. To see how it is programmed in steps, and how each step is defined, go to the Profiles Page, choose Edit Profile and open MILSTD 810D.
If your Series F4 is a single-channel controller, you will see only the temperature on Channel 1. This is NOT the true Military Standard Test 810D.

To test its customers' navigational equipment,
Ajax Testing Co. selected a version of Military Standard Test 810D, which is often used to test navigational or other military equipment under hot, humid conditions. The full test requires a two-channel controller to manipulate both temperature and humidity in an environmental chamber.

Andy planned his profile on the User Profile Record,

after checking the Setup Page to make sure the controller's inputs, outputs, limits and ranges were configured properly. Andy then programmed the profile into the Series F4.

Military Standard 810D

Step 1:	Ramp Time	俍
Step 2:	Soak	Wait for channels 1 and 2 process values to reach their set points before the test proceeds.
Step 3:	Soak	To ensure that the equipment temperature has stabilized, expose the equipment in the chamber to a temperature of $88^{\circ} \mathrm{F}$ and an RH of 88% for five hours.
Steps 4 to 11:	Ramp Time	The test calls for a programmed increase in temperature and decrease in relative humidity over a period of eight hours.
Step 12:	Soak	Expose the equipment in the chamber to a temperature of $105^{\circ} \mathrm{F}$ and an RH of 59% for three hours.
Steps 13 to 19:	Ramp Time	The test calls for a programmed decrease in temperature and increase in relative humidity over a period of seven hours.
Step 20:	Jump	Jump to step 3 and repeat steps 3 to 20 twenty times.
Step 21:	End	End the profile and turn off all outputs.

Figure 9a — Profile Chart for Military Standard 810D Test.

Figure 9b — Graph of Military Standard 810D Test.

Frequently Asked Questions About Profiles

1. Why should I check the Setup Page before programming a profile?

Complex, sophisticated profile control is possible with the Series F4's two or three analog inputs, four digital inputs, four control outputs (two for a single-channel controller), two alarm outputs, two retransmit outputs and eight digital outputs, but they must be configured correctly. Don't assume that the controller has been set up correctly for the profile you want to program and run. Checking the Setup Page first will save time.

2. Why can't I program a Ramp Rate step on Channel 2?

Ramp Rate is available only on single-channel controllers.

3. Why can't I set the Channel 2 parameters?

Channel 2 parameters do not appear in singlechannel controllers, or Input 2 is Off in a dualchannel controller.
4. Why can't I adjust the set point to get the value I want?
Check the configuration of the inputs (Setup Page) and the set point limits (Setup Page).

5. Why don't the digital inputs appear as Wait for conditions?

They must first be configured as events in the Setup Page.

6. Why can't I delete a particular step of my profile?

You cannot delete a step that another step jumps to, or a step that is an End step.

7. Why can't I delete the End step?

Because every profile must have an End step, and this End step is programmed into the profile. If you wish to add a step before the end, use the Insert Step command under the Edit Profiles Menu.

8. How do I start or run a profile?

You must be on the the Main Page to run a profile. Press the Profile Key, select the profile you want to run and choose the step you want to start on.

9. I just programmed the profile, but when I press the Profile Key nothing happens. What's wrong?

You must return to the Main Page before running a profile. The Profile Key does not function from any other page but the Main Page.

10. How do I know which profile is running?

When a profile is running, the profile name and current step number is displayed on the Main Page. You may have to scroll up or down to find this information.

11. Why can't I access certain pages, menus or parameters?

The parameters you are looking for may not be available in your model of controller.
The OEM that installed the F4 may have locked users out of certain pages and menus.
The F4's software may have been locked by a supervisor or someone else at your facility.
If a profile is running, you can enter only the Profiles Page.

Profiles Page Map

```
Create Profile
    Name Profile
    Step x (1 to 256) Type
        Autostart
            Date
            Day
            Time
        Ramp Time
        Wait For
        Event Output (1 to 8)
        Time
        Ch1 SP
        Ch2 SP
        Ch1 PID Set x (1 to 5)
        Ch2 PID Set x (6 to 10)
        Guar. Soak1
        Guar. Soak2
        Ramp Rate
            Wait For
            Event Output (1 to 8)
            Rate
            Ch1 SP
            Ch1 PID Set x (1 to 5)
            Guar. Soak1
        Soak
            Wait For
            Event Output (1 to 8)
            Time
            Ch1 PID Set x (1 to 5)
            Ch2 PID Set x (6 to 10)
            Guar. Soak1
            Guar. Soak2
    Jump
            Jump to Profile x (1 to 40)
            Jump to Step x
            Number of Repeats
        End
            Hold
            Control Off
            All Off
            Idle
            Ch1 Idle Set Point
            Ch2 Idle Set Point
```

\checkmark NOTE:

Some parameters may not appear, depending on the model and configuration of the controller.

```
Edit Profile
    Profile x (1 to 40)
        Insert Step
            Insert Before Step x
            Step x (1 to 256) Type (see below)
        Edit Step
            Step x (1 to 256) Type
                Autostart
                Date
                Day
                Ramp Time
                Wait For
                Event Output (1 to 8)
                Time
                Ch1 SP
                Ch2 SP
                Ch1 PID Set x (1 to 5)
                Ch2 PID Set x (6 to 10)
                Guarantee Soak1
                Guarantee Soak2
                Ramp Rate
                Wait For
                    Event Output (1 to 8)
                Rate
                Ch1 SP
                Ch1 PID Set x (1 to 5)
                Guarantee Soak1
                Soak
                Wait For
                Event Output (1 to 8)
                Time
                Ch1 PID Set x (1 to 5)
                Ch2 PID Set x (6 to 10)
                Guarantee Soak1
                Guarantee Soak2
            Jump
                Jump to Profile x (1 to 40)
                Jump to Step x
                Number of Repeats
                End
                    Hold
                    Control Off
                All Off
                    Idle
                Ch1 Idle Set Point
                    Ch2 Idle Set Point
        Delete Step
        Done
Delete Profile
    Profile x (1 to 40)
Re-Name Profile
    Profile x (1 to 40)
```

Parameter	r Description	Range (Modbus Value)	Default	read/write [I/O, Set, Ch] Autostar	Conditions for Parameters to Appear
\ldots... Edit Profile > Profile x (1 to 40) > Edit Step > Step x (1 to 256) > Autostart Step					
Date $\begin{array}{r} \\ \\ \\ \\ \\ \\ \end{array}$	Set date to autostart.	M/D/Y [Date] (0) [Day] (1) [mo] (1 to 12) [day] (1 to 31) [yr] (1998 to 2035)	today's date	$\begin{array}{lc} 4004 & \text { [Date] } \\ \text { or } & \text { [Day] } \\ 4005 & \text { [mo] } \\ 4006 & \text { [day] } \\ 4007 & \text { [yr] } \\ \text { r/w } & \end{array}$	Active: Always.
Day	Set day of the week to autostart.	Every Day (0) Sunday (1) Monday (2) Tuesday (3) Wednesday (4) Thursday (5) Friday (6) Saturday (7)	Every Day (0)	$4008 \mathrm{r} / \mathrm{w}$	Active: Always.
Time	Set time to autostart.	00:00:00 to 23:59:59 [h] (0 to 23) [m] (0 to 59) [s] (0 to 59)	00:00:00 [h] (0) [m] (0) [s] (0) Ramp	$\begin{aligned} & 4009 \\ & 4010 \\ & 4011 \\ & \text { r/w } \\ & \text { ne or Ra } \end{aligned}$	Active: Always. phate or Soak Step
\ldots. $>$ Edit Profile $>$ Profile $\mathrm{x}(1$ to 40$)>$ Edit Step $>$ Step l (1 to 256) > Ramp Time or Ramp Rate or Soak Step					
Wait for Wait for an event or process value. (Digital inputs must be configured in the Setup Page before they can be used here.) The F4 can be programmed to wait for up to 4 event inputs and 3 analog inputs.		Step does not wait (0) Step waits for...(1)	Step does not wait (0)	$\begin{aligned} & 4012 \mathrm{r} / \mathrm{w} \\ & 4103 \mathrm{r} \end{aligned}$	Active if digital inputs are configured as wait for events.
Event Output Turn an event output on or off. (Digital outputs must be configured in the Setup Page before they can be used here. Verify that the setup matches events.)		Digital Outputs 1 to 8 Off (0) On (1)		Dig Out 4030 r / w $[1]$ 4111 r $[1]$ 4031 r / w $[2]$ 4112 r $[2]$ 4032 r / w $[3]$ 4113 r $[3])$ 4033 r / w $[4]$ 4114 r $[4]$ 4034 r / w $[5]$ 4115 r $[5]$ 4035 r / w $[6]$ 4116 r $[6]$ 4036 r / w $[7]$ 4117 r $[7]$ 4037 r / w $[8]$ 4118 r $[8]$	Active if digital outputs are configured as events.

$\boldsymbol{\wedge}$ NOTE: To edit profiles through serial communications, see p. 7.17,
\checkmark NOTE: Two sets of Modbus registers contain profile information: In edit mode, the number of the profile being edited is at 4000, and the number of the step being edited is at 4001. When the profile is running, the number of the profile being run is at 4100, and the number of the step being run is at 4101. All run addresses are read only.

ParameterDescription	
Rime	Set the time in hours, minutes and seconds.
	Select the rate of change by entering degrees per minute.

Set Point Channel 1

Set the target for the Channel 1 process value (temperature, etc.) at the end of this step.

Set Point Channel 2

Set the target for the Channel 2 process value (temperature, etc.) at the end of this step.

Select the PID set for each channel.

Guarantee Soak

Select this feature.

Range
(Modbus Va

00:00:01 to 99
$[\mathrm{~h}] \quad(0$ to 99$)$
$[\mathrm{m}] \quad(0$ to 59$)$
$[\mathrm{s}] \quad(0$ to 59$)$

Modbus
Register

00:00:01 to 99:59:59 00:00:01
[h] (0 to 99)
] (0 to 59)
.1 to 3,000.0 degrees .
per minute
(1 to 30000)

Set point low limit to $\quad 75$ (75) set point high limit

Set point low limit to $\quad 75$ (75) set point high limit
read/write
[I/O, Set, Ch]

4045 r/w 4123 r

Conditions for

 Parameters to Appear
4009 r/w - hl

$4009 \mathrm{r} / \mathrm{w}$ [h]
$4119 \quad \mathrm{r} \quad$ [h]
4010 r/w [m]
$4120 \quad \mathrm{r} \quad[\mathrm{m}]$
$4011 \mathrm{r} / \mathrm{w}$ [s]
4121 r [s]
4043 r/w
Active if Step is set to Rate and controller is not Dual Channel.

4044 r/w 4122 r

Active if Step is set to Time or Rate.

Active if Step is set to Time and controller is Dual Channel.

Wait for:
\ldots Profile (1 to 40) > Edit Step > Step x (1 to 256) > Ramp Time or Ramp Rate or Soak Step > Wait for:

Step Does/Does Not Wait
Do not wait for any condition.
Step Wait For...
Wait for the chosen condition.

Does not wait (0) - 4012 r/w -
Wait for (1)

Event Input x (1 to 4)
Analog Input x (1 to 3)
$\boldsymbol{\checkmark}$ NOTE: Two sets of Modbus registers contain profile information: In edit mode, the number of the profile being edited is at 4000, and the number of the step being edited is at 4001. When the profile is running, the number of the profile being run is at 4100, and the number of the step being run is at 4101. All run addresses are read only.
\checkmark NOTE: For more information about how parameter settings affect the controller's operation, see the Features Chapter.

Parameter \quad Description	Range (Modbus Value)
Event Input x (1 to 4)	Don't Wait (0)
Select whether or not to wait for a dig- ital signal to initiate this step.	Wait for Off (1)
Analog On (2)	
Input \mathbf{x} (1 to 3) Select whether or not to wait for a process value to ini- tiate this step.	Don't Wait (0) Wait (1)

Default \quad| Read/write |
| :---: |
| $[\mathrm{I} / \mathrm{O}$, Set, Ch] |

Conditions for
Parameters to Appear

Active if the selected Event Input is Enabled.

Input			
4013	r / w	$[1]$	
4104	r	$[1]$	
4014	r / w	$[2]$	
410	r	$[2]$	
4015	r / w	$[3]$	
4106	r	$[3]$	
4016	r / w	$[4]$	
4107	rw	$[4]$	

Don't Wait (0) $4021 \mathrm{r} / \mathrm{w} \quad[1]$ Active if the selected Analog $\begin{array}{llll}4108 & \mathrm{r} & {[1]} \\ 4023 & \mathrm{r} / \mathrm{w} & {[2]}\end{array} \quad$ Input is present (Analog Input $\begin{array}{cc}4023 \mathrm{r} / \mathrm{w} & {[2]} \\ 4109 \mathrm{r} & {[2]}\end{array} 1$ always is).
\ldots. $>$ Ramp Time or Ramp Rate or Soak Step > Wait for: > To Wait for > Analog Input x (1 to 3)
 value that will initiate this step.

Event Output

... > Edit Step > Step x (1 to 256) > Ramp Time or Ramp Rate or Soak Step > Event Output

Output x (1 to 8) Select this Digital Output to be on or off.	$\begin{aligned} & \text { Off (0) } \\ & \text { On (1) } \end{aligned}$	Off (0)		Active if the associated Digital Output is set to Event.

WARNING:
Check the configuration of the controller on the Setup Page before starting and running a profile (if the Setup Page is not locked). Make sure settings are appropriate to the profile. If the Setup Page is accessible, failure to check the configuration before running a profile could result in damage to equipment and/or property, and/or injury or death to personnel.

[^1]| Parameter Description | Range (Modbus Value) | Default | $\begin{aligned} & \text { read/write } \\ & \text { ri/O, Set, } \mathbf{C h}] \end{aligned}$ | Conditions for Parameters to Appear |
| :---: | :---: | :---: | :---: | :---: |
| | | | | PID Set |
| \ldots > Profile x (1 to 40) > Edit Step > Step x (1 to 256) > Ramp Time or Ramp Rate or Soak Step > PID Set | | | | |
| Channel 1 | PID Set 1 (0) | PID Set 1 (0) | $\begin{aligned} & 4046 \mathrm{r} / \mathrm{w} \\ & 4124 \mathrm{r} \end{aligned}$ | Active: Always. |
| Select a PID set for channel 1. | PID Set 2 (1)
 PID Set 3 (2)
 PID Set 4 (3)
 PID Set 5 (4) | | | |
| | | | | |
| | | | | |
| Channel 2 | PID Set 6 (5) | PID Set 6 (0) | $\begin{aligned} & 4047 \mathrm{r} / \mathrm{w} \\ & 4125 \mathrm{r} \end{aligned}$ | Active if controller is Dual Channel. |
| Select a PID set for channel 2. | PID Set 7 (6)
 PID Set 8 (7)
 PID Set 9 (8)
 PID Set 10 (9) | | | |
| | | | | |
| | | | | |
| | | | | Jump |
| MMain > Profiles > Edit Profile > Profile x (1 to 40) > Edit Step > Step x (1 to 256) > Jump Step | | | | |
| Jump To Profile
 Select name or number of profile to jump to. | 1 to 40 or name (1 to 40) | - | 4050 r/w | - |
| | | | | |
| Step x (1 to 256) | $\begin{aligned} & 1 \text { to } 256 \\ & (1 \text { to } 256) \end{aligned}$ | 1(1) | 4051 r/w | Active: Always. |
| Select number of steps to jump to. | | | | |
| Number of Repeats*
 Set number of times to repeat the chosen Jump. | $\begin{aligned} & 1 \text { to } 999 \\ & \text { (1 to } 999 \text {) } \end{aligned}$ | 1 (1) | 4052 r/w | Active: Always. |
| | | | | |

End

Main > Profiles > Edit Profile > Profile x (1 to 40) > Edit Step > Step x (1 to 256) > End

Action	Hold (0)	All Off (2)	$4060 \mathrm{r} / \mathrm{w}$	Active: Always.
Select what state the controller will be in at the end of the profile.	Control Off (1)	All Off (2) Idle (3)		

* V NOTE:

If a power out condition occurs during a profile and more than 20 jump steps are stored in the F4's Profile Program memory, the controller will terminate the profile and turn off all outputs if Continue, Hold or Terminate was selected as the Power Out action. If Profile Reset or Go to Idle Set Point was selected, the controller will take those actions. A popup message will warn of this when the 21st jump step is programmed

NOTE: Two sets of Modbus registers contain profile information: In edit mode, the number of the profile being edited is at 4000, and the number of the step being edited is at 4001. When the profile is running, the number of the profile being run is at 4100, and the number of the step being run is at 4101. All run addresses are read only.
$\boldsymbol{\checkmark}$ NOTE: For more information about how parameter settings affect the controller's operation, see the Features Chapter.

Profiles Page Parameter Table

Paramete	Description	Range (Modbus Value)	Default	read/write [I/O, Set, Ch]	Conditions for Parameters to Appear
					Idle
Main > Profiles > Edit Profile > Profile x (1 to 40) > Edit Step / Step x (1 to 256) > Step > End > Idle					
Enter Channel 1 Idle Set Point Select the channel 1 set point to be maintained after the profile ends.		Set Point 1 Low Limit to Set Point 1 High Limit	75 (75)	4061 r/w	Active: Always (Channel 1).
Enter Cha	nel 2 Idle Set int lect the channel 2 point to be mainined after the proe ends.	Set Point 2 Low Limit to Set Point 2 High Limit	75 (75)	$4062 \mathrm{r} / \mathrm{w}$	Active if controller is set to Dual Channel Ramping (Channel 2).

\checkmark NOTE: Two sets of Modbus registers contain profile information: In edit mode, the number of the profile being edited is at 4000, and the number of the step being edited is at 4001. When the profile is running, the number of the profile being run is at 4100, and the number of the step being run is at 4101. All run addresses are read only.
$\boldsymbol{\sim}$ NOTE: Press the Information Key $\mathbf{~}$ for task-related tips.

Chapter Five: Setup

Setup Guidelines 5.1
Parameter Setup Order 5.1
Customizing the Main Page 5.2
Custom Main Page Parameter Record 5.3
Sample Application 5.4
Setup Page Map 5.6
Setup Page Parameter Table 5.7
Setup Page Parameter Record 5.16

Overview

This chapter presents information about configuring the controller software through the Setup Page. This is where you:

- indicate what hardware the input and output pins will be connected to;
- indicate how the inputs and outputs will function (Some of the inputs, outputs and functions may not be visible, depending on the model number of your controller);
- choose Celsius or Fahrenheit scales;
- make other choices about the display of information on the Main Page and in the Upper (LED) Display; and
- set up computer communications with the controller.

Many control features are explained in greater depth in the Features Chapter.
To reach the Setup Page from the Main Page, move the cursor to Go to Setup, then press the Right $\boldsymbol{\otimes}$ Key.

\checkmark NOTE:

If the Series $F 4$ is already installed in an environmental chamber, oven, furnace or other equipment, most parameters will already be configured and access to the Setup Page may be limited (locked).

Setup Guidelines

Setup Page parameters affect many areas of the controller's function:

- which parameters and functions are visible in other pages;
- the way the controller responds to your application; and
- the way information is displayed on the Main Page.
Setting up the controller properly will provide a sound foundation for settings in other pages.

Parameter Setup Order

Initial configuration of the Series F4 is best done in the following order:

1. Go to the System Menu (Setup Page). Here you will indicate:

- the current time and date;
- preference of PID units - U.S. (Reset, Rate) or SI (Integral, Derivative);
- preference of Celsius or Fahrenheit scales;
- whether or not to display these units in the controller's Upper Display,
\checkmark NOTE:
To see how all the pages, menus and parameters are grouped, see the software map on the inside back cover of this manual.
$\boldsymbol{\sim}$ NOTE:
For more information about how parameter settings affect the controller's operation, see the Features Chapter.
- the guaranteed soak band for each channel;
- open-loop detection warnings on or off; and
- profile-power outage actions.

2. Go the Setup Page and define all inputs, outputs and alarms:

- Analog Input x (1 to 3);
- Digital Input x (1 to 4);
- Control Output x (1A, 1B, 2A or 2B);
- Alarm Output x (1 or 2);
- Retransmit Output x (1 or 2);
- Digital Output x (1 to 8); and
- Communications

3. Go to the Operations Page and tune or set the PID sets.
4. Go to the Operations Page and set the alarm set points.
5. Go to the Profiles Page to program the profiles.

After the initial configuration of the controller, the most frequent changes will be to profiles, alarm set points and PID sets. The Setup Page is likely to be the least frequently accessed for changes. Some manufacturers may prefer to lock out this page to prevent user access.
Changing parameters may change other parameters. For example, changing the type of units (temperature, relative humidity, etc.) will affect settings that assume either Reset or Rate and Integral or Derivative. Changing from the Celsius to the Fahrenheit scale will affect every parameter with a numerical value in one or the other scale. In some cases, a change in one parameter will affect the defaults of others.
\checkmark NOTE:
Changes to some parameters will affect other parameters.

Customizing the Main Page

Up to 16 lines can be added to the Main Page to display status and information from the controller.
Go to the Setup Main Page menu on the Setup Page. The first screen will prompt you to choose one of the 16 lines to customize. "P1 Parameter" is the first line; "P16 Parameter" is the 16th. After choosing this line by pressing \boldsymbol{D}, select a parameter to monitor. Your choices are:

- None
- Input 1 Value
- Input 2 Value
- Input 3 Value
- Set Point 1
- Set Point 2
- \% Power 1
- \% Power 2
- Tune Status 1
- Tune Status 2
- Time
- Date
- Digital Ins*
- Digital Outs*
- Time Remaining
- Current File
- Current Step
* When a digital input or output is active, its number will appear in the Main Page display; when it is inactive, its position will be underlined.
When a Wait for condition is still pending, its number will appear in the Main Page display; when it is no longer being awaited, it will be underlined.
- Active Ch1 PID Set
- Active Ch2 PID Set
- Last Jump Step
- Jump Count
- WaitFor Status
- Step Type
- Target SP1
- Target SP2
- Inner Set Point
- Custom Message 1
- Custom Message 2
- Custom Message 3
- Custom Message 4
- Input 1 Cal. Offset
- Input 2 Cal. Offset
- Input 3 Cal. Offset

Custom Main Page Parameter Record

Make a photocopy of this page and enter your settings on that copy .
Name \qquad Date \qquad

Will always appear if active:	Main Page Input 1 Error Input 2 Error Input 3 Error	
	Alarm 1 Condition	
set up to appear:	Alarm 2 Condition	
	Autotuning Channe1 1	
	Autotuning Channel 2	

Sample Application: Setup for Environmental Testing

Before programming the profile to run the temperature and humidity tests in the environmental chamber, Andy had to configure the controller to suit the equipment and the test.

He went to the Setup Page, System Menu, and established the global system parameters, including the real-time clock, the date and the PID units. Then he continued through the list of inputs and outputs, configuring each and keeping notes about his settings on the User Setup Chart.

To enter, press the Right Key.

To exit, press the Left Key repeatedly.

Use a copy of the chart at the end of this chapter to record your settings.

Analog Input 1

For greatest accuracy in measuring the chamber temperature, a resistance temperature detection (RTD) sensor has been wired to ana\log input 1. Andy wanted to measure tenths of degrees Fahrenheit, with an alarm that would clear by itself if the temperature exceeded or fell below the active alarm set point band. Alarm set points are determined in the Operations Page.

Sensor: RTD
Type: DIN
Decimal Point: 0.0
Set Point Low: $32.0^{\circ} \mathrm{F}$

Set Point High: $450.0^{\circ} \mathrm{F}$
No Calibration Offset
0 -second Filter
Self-Clearing Error

Retransmit Output 1

To track the temperature of the equipment inside the chamber, Andy configured a retransmit output to match input 3. He scrolled down the list of inputs and outputs on the Setup Page and found Retransmit Output. He chose $50^{\circ} \mathrm{F}$ and $150^{\circ} \mathrm{F}$, respectively, for the Scale Low and Scale High; the smaller the range, the higher the resolution on the chart.

Source: Input 3
Current: $4-20 \mathrm{~mA}$
Scale Low: $50^{\circ} \mathrm{F}$
Scale High: 150° F
Scale Offset: $0^{\circ} \mathrm{F}$

Control Output x

 (1A, 1B, 2A, 2B)Next, he scrolled back up to set the control outputs controlling heat and humidity. For the fastest possible switching rate, tighter control and longer heater life, he selected Burst Fire control for each of them, designating 1 A and 1 B as heat/cool outputs, and 2 A and 2 B as
humidify/de-humidify outputs.

Digital Output 7

Digital output 7 was wired to an SSR (solid-state relay) that switched a solenoid valve controlling the flow of liquid nitrogen used for cooling.

Name: Default
Function: Boost cool
Boost Power Level: -90\%
Boost Delay: 20 seconds

Analog Input 2

The humidity sensor on analog input 2 was a process sensor using a 4 to 20 mA signal, so Andy set the high end of the scale (20 mA) for 100% and the low (4 mA) for 0% relative humidity (rh). Knowing that process sensor displays are sometimes jumpy, he put a 1 -second filter on it to stabilize it.

Sensor: Process
Type: Vaisala
Units: \% RH
Scale Low: 0\%
Scale High: 100\%

Set Point Low: 10\%
Set Point High: 90\%
No Calibration Offset
1-second Filter
Self-clearing Error

Analog Input 3

A thermocouple (type J) sensor was adequate to measure the temperature of the equipment itself (analog input 3). The other settings remained the same as analog input 1.

Sensor: Thermocouple Type: J
Decimal Point: Whole numbers only

Alarms

He assigned an alarm output to indicate a temperature deviation on input 1 , which would monitor chamber temperature, and gave it a name that would state the problem.

Name: TEMP DEV
Type: Deviation
Source: Input 1
Latch: Yes
Silencing: Self-clear
Alarm Hysteresis: 1, 1.0
Sides: Both
Condition: Close on alarm
Show: Yes

Digital Inputs

Then he set up the digital inputs for remote functions. Digital input 1 would be wired to a key-lock switch that requires the operator to have a key to operate the controller and chamber. Digital input 2 would be wired to a door switch to stop the profile if the chamber door opens.

Digital Input 1

Name: KEYLOCK
Function: Panel lock
Condition: Start on high
Digital Input 2
Name: Default
Function: Pause
Condition: High

Digital Output 6

For heating and cooling capacity and to accommodate the compressor, Andy assigned these functions to Digital outputs 6, 7 and 8.

Digital output 6, wired to a big auxiliary heater, was set up to kick in only when the main heater worked at greater than 90% power (boost power level) for more than 20 seconds (boost delay).

Name: BOOST HEAT
Function: Boost heat
Boost Power Level: 90\%
Boost Delay: 20 seconds

Digital Output 8

Andy set the compressor control parameter to have the compressor run only when cooling is needed.
\% on Power: 0\%
\% off Power: 9\%
Off Delay: 30 seconds
On Delay: 60 seconds

There was no computer connection, so Andy skipped Communications.

Then he left the Setup Page and went to the Factory Page where he put a password lock on the Setup Page, Profile Page and Factory Page.

Finally, he went to the Operations Page and set the active alarm band:
$-20^{\circ} \mathrm{F}$
$+20^{\circ} \mathrm{F}$

Setup Page Map

System
Guar. Soak Band1
Guar. Soak Band2
Current Time
Current Date
PID Units
${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$
Show ${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$
Ch1 Autotune SP
Ch2 Autotune SP
Input 1 Fail
Input 2 Fail
Open Loop Ch1
Open Loop Ch2
Power-Out Time
Power-Out Action
Analog Input x (1 to 3)
Sensor
Type
Units
Decimal
Scale Low
Scale High
Choose Scaling
Ch2 Output Disable?
Enter In1 Temp Low
Enter In1 Temp High
SP Low Limit
SP High Limit
Calibration Offset
Filter Time
Error Latch
Cascade
Digital Input x (1 to 4)
Name
Function
Condition
Control Output x (1A, 1B, 2A or 2B)

Function
Cycle Time
Process
Hi Power Limit
Lo Power Limit

Alarm Output x (1 and 2)

Name

Alarm Type
Alarm Source
Latching
Silencing
Alarm Hysteresis
Alarm Sides
Alarm Logic
Alarm Messages
Retransmit Output x (1 and 2)
Retransmit Source
Analog Range
Low Scale
High Scale
Scale Offset
Digital Output x (1 to 8)
Name
Function
Off
Event Output
Complementary Output
(Output 5 only)
Control Output
Boost Heat (Output 6 on1y)
Boost \%Power
Boost Delay Time
Boost Cool (Output 7 only)
Boost \%Power
Boost Delay Time
Compressor (Output 8 only)
Compressor On \%Power
Compressor Off \%Power
Compressor On Delay Compressor Off Delay
Communications
Baud Rate
Address
Custom Main Page
Px (Parameter 1 to 16)
Process Display
Input 1 only
Alternating Display
IN1 Display Time IN2 Display Time IN3 Display Time
Static Message
Message 1 to 4

Parameter	Description	Range (Modbus Value)	Default	Register read/write (I/O, Set, Ch)	Conditions for Parameters to Appear
	System				
Main > Setup > System					
Guarantee Soak Band \mathbf{x} (1 or 2) Select value above and below set point to define the soak band.		Decimal choice dependent: 1 to 30000 , or 1 to 3000.0, or .01 to 300.0 , or .001 to 30.0 (1 to 30000)	1	Band 1205 $[1]$ 1212 $[2]$ r / w	Active: Always (1). Active if controller is Dual Channel (2).
Current Ti	ter actual time. -hour-clock)	$\begin{aligned} & \text { hh:mm:ss } \\ & 00: 00: 00 \text { to } 23: 59: 59 \\ & \text { [hh] (0 to 23) } \\ & \text { [mm] (0 to } 59) \\ & \text { [ss] (0 to } 59) \end{aligned}$	current time	Time 1916 $[\mathrm{hh}]$ 1917 $[\mathrm{~mm}]$ 1918 $[\mathrm{ss}]$ r / w	Active: Always.
Current D E	ter actual date.	$\begin{aligned} & \text { M/D/Y } \\ & 01 / 01 / 1998 \text { to } \\ & 12 / 31 / 2035 \\ & \text { [mm] }(1 \text { to } 12) \\ & \text { [dd] (1 to } 31) \\ & \text { [yy] (1998 to } 2035) \end{aligned}$	current date	Time 1919 $[\mathrm{~mm}]$ 1920 [dd] 1921 $[\mathrm{yy}]$ r/w	Active: Always.
PID Units	oose units for PID trol.	U S (Reset/Rate) (0) SI (Integral/Derivative) (1)	U S (Reset/ Rate) (0)	900 r/w	Active: Always.
${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$	oose temperature ale.	$\begin{aligned} & { }^{\circ} \mathrm{F}(0) \\ & { }^{\circ} \mathrm{C}(1) \end{aligned}$	${ }^{\circ} \mathrm{F}(0)$	901 r/w	Active: Always.
Show ${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$ Choose whether to display or hide ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ in top display.		No, Upper Display (0) Yes, Upper Display (1)	Yes, Upper Display (1)	1923 r/w	Active: Always.
Channel x Autotune Set Point (1 or 2) Set percent of set point to auto-tune to		50 to 150\% (50 to 150)	90\% (90)	$\begin{array}{lr} & \text { Point } \\ 304 & {[1]} \\ 323 & {[2]} \\ \text { r/w } & \end{array}$	Active: Always (1). Active if controller is Dual Channel (2).
Input x Fail (1 or 2) Enter percent of power supplied to the output if analog input sensor fails.		$\begin{aligned} & 0 \text { to } 100 \% \text { Heat only } \\ & 0 \text { to } 100 \% \text { Cool only } \\ & -100 \% \text { to }+100 \% \\ & \text { Cool/Heat or } \\ & \text { Heat/Cool } \end{aligned}$	0\% (0)	Fail 903 $[1]$ 906 $[2]$ r/w	Active: Always (1). Active if controller is Dual Channel (2).
Open Loop	Channel x (1 or 2) lect whether to rn off outputs and splay an error ssage.	$\begin{aligned} & \text { Off (0) } \\ & \text { On (1) } \end{aligned}$	Off (0)	Channel 904 $[1]$ 907 $[2]$ r/w	-
Power-Out Time Define a power outage in seconds.		$\begin{aligned} & 0 \text { to } 30000 \text { seconds } \\ & (0 \text { to } 30000) \end{aligned}$	$\begin{aligned} & 10 \text { seconds } \\ & (10) \end{aligned}$	1213 r/w	-
Power-Out Action Choose controller response to power outage while running a profile.		Continue (0) Hold (1) Terminate (2) Reset (3) Idle Set Point 1 (4) Idle Set Point 2 (5)	Continue (0)	$1206 \mathrm{r} / \mathrm{w}$	Active: Always.
\checkmark NOTE:					
For more information about how parameter settings affect the controller's operation, see the Features Chapter.					

ParameterDescription Analog In
Main > Setup > Analog Inp
Sensor
Select the sensor.
Type
Select the lineariza-
tion table to apply

Parameter | Description |
| :--- |

Altitude

Units | Select an elevati |
| :--- |
| to compensate for |
| wet bulb evapora |
| tion rates. |

Select the units of
measure for the
input.

Decimal | Set the decimal |
| :--- |
| point for input. |

Scale Low

Set unit value for low end of current or voltage range.
Scale High
Set unit value for high end of current or voltage range.

Choose Scaling

Select normal or inverse scaling.

Disables Channel 2 outside the range defined by Enter In1 Temp Low and Enter In1 Temp High.

Enter In1 Temp Low

Choose the lowest temperature at which the channel 2 output is active.

Enter In1 Temp High

Choose the highest temperature at which the channel 2 output is active.

Set Point Low Limit

Set limit for minimum set point.

Range (Modbus Value)	Default

0 to 2499 ft (0) $\quad 0$ to 2499 ft
2500 to 4999 ft (1)
5000 ft and above (2)
$\begin{array}{lc}\text { Temperature (0) } & \text { Temperature } \\ \% \text { rh (1) } & (0)\end{array}$
psi (2)
units (3)
0 (0)
0.0 (1)
0.00 process (2)
0.000 process (3)

Depends on sensor and decimal point selection.

Depends on sensor and decimal point selec-
tion.

Normal Scaling (0)
Scale Inversion (1)
(Scale High corre-
sponds to the lowest
process value, and
Scale Low corre-
sponds to the highest
process value.)
No (0) No (0)
Yes (1)

Modbus			
Register			
read/write			
(I/O, Set, Ch)		\quad	Conditions for
:---:			
Parameters to Appear			

1902 r/w Active if Analog Input 2 Type is Wet Bulb-Dry Bulb.

Input	Active if Sensor Type is set to
$[1]$	Process.
$[2]$	
$[3]$	
Input	Active if Sensor Type is set to
$[1]$	Process.
$[2]$	
$[3]$	
Input	Active if Sensor Type is set to

Active if Sensor Type is set to Process.

Active if Sensor Type is set to Process.

696 r/w
Active if Analog Input 2, Sensor is set to Process and Units is set to \%rh and Analog Input 1, Units is set to Temperature.

Active if Ch2 Output Disable is set to Yes.

Sensor range high to - 698 r/w
Active if Ch2 Output Disable is set to Yes.

Depends on sensor. -

	Input
602	$[1]$
612	$[2]$
622	$[3]$
r/w	

Active: Always, except when Cascade is set to Process Cascade or Deviation Cascade this is masked for Analog Input 1.
\checkmark NOTE:
For more information about how parameter settings affect the controller's operation, see the Features Chapter.

Parameter Description	Range (Modbus Value)	Default	read/write [I/O, Set, Ch]	Conditions for Parameters to Appear
Set Point High Limit Set limit for maximum set point.	Depends on sensor.	-	Input 603 $[1]$ 613 $[2]$ 623 $[3]$ r/w	Active: Always, except when Cascade is set to Process Cascade or Deviation Cascade this is masked for Analog Input 1.
Calibration Offset Compensate for sensor errors or other factors.	-19999 to 30000	0	Input 605 $[1]$ 615 $[2]$ 625 $[3]$ r / w	Active: Always.
Filter Time Set the filter time for input in seconds.	$\begin{aligned} & -60.0 \text { to } 60.0 \\ & (-600 \text { to } 600) \end{aligned}$	0.0 (0) 1.0 if Decimal is set to 0.0 and Sensor Type is set to Thermocouple or RTD. (10)	Input 604 $[1]$ 614 $[2]$ 624 $[3]$ r / w	Active: Always.
Error Latch Select whether error clear is automatic or manual.	Self Clear (0) Latch (1)	Self Clear (0)	Input 607 $[1]$ 617 $[2]$ 627 $[3]$ r / w	Active: Always.
Cascade Select whether to use the cascade algorithm.	No Cascade (0) Process Cascade (1) Deviation Cascade (2)	No Cascade (0)	1925 r/w	Active if Analog Input 3 is not set to Off (variable selection only).
Cascade Low Range, Process	Depends on sensor and decimal point selection.	-	1926 r/w	Active if Input 3 is not set to off and Process Cascade is selected.
Cascade High Range, Process	Depends on sensor and decimal point selection.	-	1927 r/w	Active if Input 3 is not set to off and Process Cascade is selected.
Cascade Low Range, Deviation	Depends on sensor and decimal point selection.	-	1926 r/w	Active if Input 3 is not set to off and Deviation Cascade is selected.
Cascade High Range, Deviation	Depends on sensor and decimal point selection.	-	1927 r/w	Active if Input 3 is not set to off and Deviation Cascade is selected.
Digital In	ut $\times(1$ to 4)			
Main > Setup > Digital Input x (1 to 4)				
Name Name the input for easy reference.	<selected by user> (ASCII Values)	DIGIT IN1	$\begin{aligned} & 3000-3009 \\ & 3010-3019 \\ & 3020-3029 \\ & 3030-3039 \\ & \text { r/w } \end{aligned}$	Active: Always.

\checkmark NOTE:
Press the Information Key $\mathbf{9}$ for more task-related tips.

Parameter	Description	Range (Modbus Value)	Default
Function		Off (0)	Off (0)
Select the digital input function.		Panel Lock (1) Reset Alarm (2)	
		Control Outputs Off (3)	
		All Outputs Off (4)	
		Digital Outputs Off (5)	
		Start Profile (6)*	
		Pause Profile (7)	
		Resume Profile (8)	
		Terminate Profile (9)	
		Wait for Event (10)	
Condition		Low (0)	Low (0)
	Select the condition to trigger digital input.	High (1)	

Modbus Register read/write (I/O, Set, Ch)	Conditions for Parameters to Appear
Input 1060 $[1]$ 1062 $[2]$ 1064 $[3]$ 1066 $[4]$ r/w	Active: Always. While a profile is running, the controller will not recognize digital inputs that are programmed to start a profile. Only one profile can be run at a time. * This prompt only appears if the F4 memory contains a profile.
Input 1061 $[1]$ 1063 $[2]$ 1065 $[3]$ 1067 $[4]$ r/w	Active: Always. Digital inputs are edge triggered and require a transition from high to low or low to high.

Control Output x (1A,1B, 2A and 2B)

Main > Setup > Control Output x (1A,1B, 2A and 2B)

Name Name the alarm for easy reference.	<selected by user> (ASCII Values)	ALARMX	$\begin{aligned} & 3200-3209 \\ & 3210-3219 \\ & \text { r/w } \end{aligned}$	Active always.
Alarm Type Select the alarm type.	Off (0) Process (1) Deviation (2)	Off (0)	Output 702 $[1]$ 719 $[2]$ r / w 	Active always.
Alarm Source Select the alarm source.	Input 1 (0) Input 2 (1) Input 3 (2)	Off (0)	Output 716 $[1]$ 733 $[2]$ r / w	Active if the source is enabled.
Latching Choose automatic or manual clearing of alarms.	Alarm Self-Clears (0) Alarm Latches (1)	Alarm SelfClears (0)	Output 704 $[1]$ 721 $[2]$ r / w	Active if Alarm Output is enabled.
Silencing Choose whether to mask alarms on power-up.	$\begin{aligned} & \text { No (0) } \\ & \text { Yes (1) } \end{aligned}$	No (0)	Output 705 $[1]$ 722 $[2]$ r / w	Active if Alarm Output is enabled.
Alarm Hysteresis Set the alarm hysteresis.	1 to 30000 (1 to 30000)	3 (3)	Output 703 $[1]$ 720 $[2]$ r / w	Active if Alarm Output is enabled.
Alarm Sides Choose to enable Low, High or both alarm set points.	Both (0) Low (1) High (2)	Both (0)	Output 706 $[1]$ 723 $[2]$ r / w	Active if Alarm Output is enabled.
Alarm Logic Select the alarm logic option.	Open on Alarm (0) Close on Alarm (1)	Open on Alarm (0)	Output 707 $[1]$ 724 $[2]$	Active if Alarm Output is enabled.
Alarm Messages Select the alarm message option.	Yes on Main Page (0) No (1)	$\begin{aligned} & \text { Yes on Main } \\ & \text { Page }(0) \end{aligned}$	Output 708 $[1]$ 725 $[2]$ r/w	Active if Alarm Output is abled.

Retransmit Output x (1 and 2)

Main > Setup > Retransmit Output x (1 and 2)

Retransmit Source	Input 1 (0) Input 2 (1) Input 3 (2) Set Point 1 (3) Set Point 2 (4) Channel 1 Power (5) Channel 2 Power (6)	Input 1 (0)	$\begin{aligned} & 79 \\ & 726 \\ & \text { r/w } \end{aligned}$	Output [1] [2]	Active: Always. (Values appear only if the source is enabled.)
Choose a source for retransmit signal.					
Analog Range	4 to 20 mA (0)	4 to 20 mA (0)		Output	Active: Always.
	0 to 20 mA (1)		836	[1]	
Select voltage or	0 to 5 V (2)		837	[2]	
current range to	1 to 5 V (3)		r/w		
retransmit.	0 to 10 V (4)				
Low Scale	-19999 to high scale -1	Low end of			Active: Always.
Set low end of cur-	(minimum sensor	sensor		[1]	
rent or voltage	range) (-19999 to	range		[2]	
	High Scale -1)		r/w		

\checkmark NOTE:

Press the Information Key $\mathbf{\Theta}$ for more task-related tips.

!

WARNING: Provide a labeled switch or circuit breaker near peripheral equipment permanently connected to the Series F4 digital outputs as the means of disconnection for servicing. Failure to do so could result in damage to equipment and/or property, and/or injury or death to personnel.

\checkmark NOTE:

For more information about how parameter settings affect the controller's operation, see the Features Chapter.

Setup Page Parameter Table

Parameter Description	Range (Modbus Value)	Default	Register read/write (I/O, Set, Ch)	Conditions for Parameters to Appear
Compressor On \% Power The compressor will be on below this chosen power level.	$\begin{gathered} -100 \% \text { to } 100 \% \\ (-100 \text { to } 100) \end{gathered}$	0\% (0)	2072 r/w	Active if Digital 8 Function is Compressor.
Compressor Off \% Power The compressor will be off above this chosen power level.	Compressor on \% power to 100%	Compressor on \% power	2073 r/w	Active if Digital 8 Function is Compressor.
Compressor Off Delay Set time to delay compressor turn-off.	$\begin{aligned} & 0 \text { to } 9999 \text { seconds } \\ & (0 \text { to } 9999) \end{aligned}$	$\begin{aligned} & 10 \text { seconds } \\ & (10) \end{aligned}$	2075 r/w	Active if Digital 8 Function is Compressor.
Compressor On Delay Set time to delay compressor turn-on.	1 to 9999 seconds (1 to 9999)	$\begin{aligned} & 30 \text { seconds } \\ & (30) \end{aligned}$	2074 r/w	Active if Digital 8 Function is Compressor.
WARNING: Provide a labeled switch or circuit breaker near peripheral equipment permanently connected to the Series F4 digital outputs as the means of disconnection for servicing. Failure to do so could result in damage to equipment and/or property, and/or injury or death to personnel.				
Communications				
Main > Setup > Communications				
Baud Rate Select transmission speed.	$\begin{aligned} & 19200(0) \\ & 9600(1) \end{aligned}$	19200	Not available	Active: Always.
Address Select address for controller.	1 to 247 (1 to 247)	1	Not available	Active: Always.

[^2]Press the Information Key for more task-related tips.

\checkmark NOTE:

For more information about how parameter settings affect the controller's operation, see the Features Chapter.

Setup Page Parameter Record

Make a photocopy of this page and enter your settings on that copy .
Name \qquad Date \qquad

System Menu	Setting							
Guar. Soak Band 1								
Guar. Soak Band 2								
Current Time								
Current Date								
PID Units								
F or C								
Show F or C								
Ch1 Autotune SP								
Ch2 Autotune SP								
Input 1 Fail								
Input 2 Fail								
Open Loop Ch1								
Open Loop Ch2								
Power-Out Time								
Power-Out Action								
Input Menu	Analog In 1	Analog In 2	Analog $\ln 3$	Digital In 1	Digital In 2	Digital In 3	Digital ln 4	
Sensor								
Type								
Decimal								
Altitude								
Units								
Scale Low								
Scale High								
Choose Scaling								
Ch2 Output Disable?								
Enter In1 Temp Low								
Enter In1 Temp High								
SP Low Limit								
SP High Limit								
Calibration Offset								
Filter Time								
Error Latch								
Cascade								
Name								
Function								
Condition								
Control Output Menu	Output 1A	Output 1B	Output 2A	Output 2B	Alarm 1	Alarm 2	Retrans 1	Retrans 2
Function								
Cycle Time								
Process Type								
Hi Power Limit								
Lo Power Limit								
Alarm Name								
Alarm Type								
Alarm Source								
Latching								
Silencing								
Alarm Hysteresis								
Alarm Sides								
Alarm Logic								
Alarm Messages								
Retransmit Source								
Analog Range								
Low Scale								
High Scale								
Scale Offset								
Digital Output Menu	Digit Out 1	Digit Out 2	Digit Out 3	Digit Out 4	Digit Out 5	Digit Out 6	Digit Out 7	Digit Out 8
Name								
Function								
Boost \% Power								
Boost Delay								
Compressor On \% Power								
Compressor Off \% Power								
Compressor On Delay								
Compressor Off Delay								
Communications Menu	Setting							
Baud Rate								
Address								

6
 Chapter Six: Features

InputsCalibration Offset 6.2
Filter Time Constant 6.2
Set Point Low Limit and High Limit 6.3
High Scale and Low Scale 6.3
Event 6.3
Retransmit 6.3
Control Methods
On-Off Control 6.4
Proportional Control 6.4
PI Control 6.5
PID Control 6.5
Dead Band 6.5
Multiple PID Sets 6.6
Burst Fire 6.6
Other Features
Autotuning 6.7
Power-Out Time/Action 6.7
Alarms
Alarm Set Points 6.8
Alarm Hysteresis 6.8
Process or Deviation Alarms 6.8
Alarm Latching 6.9
Alarm Silencing 6.9
Alarm Sides 6.9
Advanced Features
Boost Heat and Boost Cool 6.10
Compressor Control 6.10
Cascade 6.11

Inputs/Outputs

Calibration Offset

Calibration offset allows a device to compensate for an inaccurate sensor, lead resistance or other factors that affect the input value. A positive offset increases the input value, and a negative offset decreases the input value.
You can view or change the offset value of inputs 1, 2 or 3 with the Calibration Offset parameter.

Location in software: Setup Page > Analog Input x (1 to 3).

Figure 6.2a - Calibration Offset.

Filter Time Constant

A time filter smooths an input signal by applying a first-order filter time constant to the signal. Either the displayed value or both the displayed and control values can be filtered. Filtering the displayed value makes it easier to monitor. Filtering the signal may improve the performance of PID control in a noisy or very dynamic system.
A positive value affects only the viewed values. A negative value affects both the viewed and control values.
Location in software: Setup Page > Analog Inputs x (1 to 3).

Figure 6.2b - Filtered and Unfiltered Input Signals.

Open Loop Detect

Open loop checks the integrity of the control loop, consisting of the controller output, power control, heater and sensor.
If the output power is at its maximum for a period of time equal to the reset time and the input has not changed at least $\pm 5^{\circ} \mathrm{F}$, the controller will switch to Manual Mode at 0% output power. The upper screen will display [oPLP"] and the lower screen will display "Open Loop."
To clear an open loop error, after correcting the problem that caused it, turn the controller off then back on.
Location in software: Setup Page > System.

Set Point Low Limit and High Limit

The controller constrains the set point to a value between a low limit and a high limit. The high limit cannot be set higher than the sensor high limit or lower than the low limit. The low limit cannot be set lower than the sensor low limit or higher than the high limit.
You can view or change the input low limit (SP Low Limit) and the input high limit (SP High Limit) for analog inputs 1, 2 or 3 .
Location in software: Setup Page > Analog Input x (1 to 3).

Figure 6.3a - Sensor Ranges.

High Scale and Low Scale

When an analog input is selected as a process input, you must choose a value to represent the low and high ends of the current or voltage range. For example, if an analog input with a process sensor type 4 to 20 mA is selected and the units are $\%$ Relative Humidity, then 0% could represent 4 mA and 100% could represent 20 mA . The set point will be limited to the range between scale low and scale high.
Location in software: Setup Page > Retransmit Output x (1 or 2).

Event

With an event input an operator can perform certain operations on a system by opening or closing a switch or applying a dc logic signal to the controller. This feature can add convenience, safety or security to a system.
In the Series F4, digital inputs 1 to 4 can be assigned as wait for events, as well as other process control features.
Location in software: Setup Page $>$ Digital Input x (1 to 4) Condition.

Retransmit

Retransmit outputs 1 and 2 can retransmit an analog signal to serve as an input variable for another device. The signal may serve as a remote set point for another controller or as input for a chart recorder to document system performance over time.
Location in software: Setup Page.

Control Methods

On-Off Control

On-off control switches the output either full on or full off, depending on the input, set point and hysteresis values. The hysteresis value indicates the amount the process value must deviate from the set point to turn on the output. Increasing the value decreases the number of times the output will cycle. Decreasing hysteresis improves controllability. With hysteresis set to 0 the process value would stay closer to the set point, but the output would switch on and off more frequently, causing "chattering."

Figure 6.4a — On-off Control for Heating and Cooling.

Proportional Control

Some processes need to maintain a temperature or process value closer to the set point than on-off control can provide. Proportional control provides closer control by adjusting the output when the temperature or process value is within a proportional band. When the value is in the band, the controller adjusts the output based on how close the process value is to the set point; the closer to set point the lower the output. This is similar to backing off on the gas pedal of a car as you approach a stop sign. It keeps the temperature or process value from swinging as widely as it would with simple on-off control. However, when a system settles down, the temperature or process value tends to "droop" short of the set point.
With proportional control the output power level equals (set point minus process value) divided by propband.
Location in software: Operations Page > Edit PID > PID Set Channel x (1 or 2) > PID Set x (1 to 5) or (6 to 10).

Proportional plus Integral (PI) Control

The droop caused by proportional control (reset) can be corrected by adding integral control. When the system settles down the integral value is tuned to bring the temperature or process value closer to the set point. Integral determines the speed of the correction, but this may increase the overshoot at startup or when the set point is changed. Too much integral action will make the system unstable. Integral is cleared when the process value is outside of the proportional band.
Integral (if units are set to SI) is measured in minutes per repeat. A low integral value causes a fast integrating action.
Reset rate (if units are set to U.S.) is measured in repeats per minute. A high reset value causes a fast integrating action.
Location in software: Operations Page > Edit PID > PID Set Channel x (1 or 2) $>$ PID Set $\mathrm{x}(1$ to 5) or (6 to 10).

Proportional Integral Derivative (PID) Control

Use derivative rate control to minimize overshoot in a PI-controlled system. Derivative adjusts the output based on the rate of change in the temperature or process value. Too much derivative will make the system sluggish.
Location in software: Operations Page > Edit PID > PID Set Channel x (1 or 2) > PID Set x (1 to 5) or (6 to 10).

Figure 6.5b — PID Control.

Dead Band

In a multiple PID application the dead bands above and below the set point can save an application's energy and wear by maintaining process temperature within acceptable ranges. Shifting the effective cooling set point and heating set point keeps the two systems from fighting each other.

Proportional action ceases when the process value is within the dead band. Integral action continues to bring the process temperature to the set point. When the dead band value is zero, the heating element activates when the temperature drops below the set point, and the cooling element switches on when the temperature exceeds the set point.
Location in software: Operations Page > Edit PID $>$ PID Set Channel x (1 or 2) > PID Set x (1 to 5) or 6 to 10).

Figure 6.5c - Cooling Dead Band.

Figure 6.5 a - Proportional Plus Integral Control.

Multiple PID Sets

The Series F4 has five PID sets available for each channel, sets 1 to 5 for Channel 1 and sets 6 to 10 for Channel 2, allowing optimal performance under different conditions, loads and temperatures. In the Static Set Point mode, PID Set 1 is used for Channel 1 and PID Set 6 is used for Channel 2 control. When programming a profile, you can assign different sets to each Ramp step and Soak step.
A PID set includes proportional, integral and derivative settings for outputs A and B. It also includes dead band, as long as the proportional band is not set to 0 .
Location in software: Operations Page > Edit PID > PID Set Channel x (1 or 2) > PID Set x (1 to 5) or (6 to 10).

Burst Fire

Burst firing provides even output power with the lowest level of noise generation (RFI). Burst fire is the preferred method for controlling a resistive load, providing a very short time base for longer heater life.
The controller determines when the ac sine wave will cross the 0 -volts point, then switches the load on or off only at this point, minimizing RFI.
Location in software: Setup Page > Control Output $\mathrm{x}(1$ to 3$)$.

Channel 1 (Heat/Cool)	Channel 2 (Relative
Output 1A Heat	Humidity)
Output 1B Cool	Output 2A Humidify
PID Sets 1 to 5	Output 2B Dehumidify
PropBand A	PID Sets 6 to 10
Integral A	PropBand A
Derivative A	Integral A
Dead Band A	Derivative A
PropBand B	Dead Band A
Integral B	PropBand B
Derivative B	Integral B
Dead Band B	Derivative B
	Dead Band B

Figure 6.6 - Burst Fire.

Other Features

Autotuning

The autotuning feature allows the controller to measure the system response to determine effective settings for PID control. When autotuning is initiated the controller reverts to on-off control. The temperature must cross the auto-tune set point four times to complete the autotuning process. Once complete, the controller controls at the normal set point, using the new parameters. The F4 stores the value in the PID set specified.
Location in software: Operations Page $>$ Autotune PID $>$ Channel 1 Autotune > PID Set x (1 to 5) or Channel 2 Autotune > PID Set x (6 to 10).

Figure 6.7 - Autotuning.

\checkmark NOTE:

For manual tuning, see the Operations Chapter.

Power-Out Time/Power-Out Action

The Power-Out Time and Power-Out Action parameters direct the F4's response to the interruption of electrical power while running a profile. The F4's battery-powered real-time clock tracks the amount of time the power is out. When power is restored, the controller compares this amount of time to the Power-Out Time setting and takes whatever action is selected in the Power-Out Action setting.
First, determine how long the power can be interrupted without adversely affecting results. Set the Power-Out Time to this time. If power is returned in less time than this setting, the profile will resume running. (The profile run time stops while the power is off.) If power is returned after a time longer than this setting, the F4 will take action based on the user-configured Power-Out Action parameter: Continue (resume the profile at the point that power was interrupted); Hold (hold the profile at the point that power was interrupted); Terminate (stop the profile using the End step conditions); Reset (restart the profile from Step 1); Idle (stop the profile and transfer to an idle setpoint).
Location in software: Setup Page $>$ System $>$ Pow-er-Out Time > Power-Out Action.
\checkmark NOTE:
The Power Out Action occurs only if a profile was running when the power went out. If a profile was on hold, it will return to its Hold status when the power returns.

Alarms

Alarms are activated when the process value or temperature leaves a defined range. A user can configure how and when an alarm is triggered, what action it takes and whether it turns off automatically when the alarm condition is over.
Configure alarm outputs in the Setup Page before setting alarm set points.

Alarm Set Points

The alarm high set point defines the process value or temperature that will trigger a high side alarm. It must be higher than the alarm low set point and lower than the high limit of the sensor range.
The alarm low set point defines the temperature that will trigger a low side alarm. It must be lower than the alarm high set point and higher than the low limit of the sensor range.
Location in software: Operations Page > Alarm Set Point > Alarm x (1 or 2).

Alarm Hysteresis

An alarm state is triggered when the process value reaches the alarm high or alarm low set point. Alarm hysteresis defines how far the process must return into the normal operating range before the alarm can be cleared.
Alarm hysteresis is a zone inside each alarm set point. This zone is defined by adding the hysteresis value to the alarm low set point or subtracting the hysteresis value from the alarm high set point.

Location in software: Setup Page > Alarm Output x (1 or 2).

Figure 6.8 - Alarm Settings.

Process or Deviation Alarms

A process alarm uses one or two absolute set points to define an alarm condition. A deviation alarm uses one or two set points that are defined relative to the control set point. High and low alarm set points are calculated by adding and/or subtracting offset values from the control set point. If the set point changes, the window defined by the alarm set points automatically changes with it.
In the Series F4 you must configure each alarm output as either a process or deviation alarm.

Location in software: Setup Page > Alarm Output x (1 or 2).

Alarm Latching

A latched alarm will remain active after the alarm condition has passed. It can only be deactivated by the user. An alarm that is not latched (self-clearing) will deactivate automatically when the alarm condition has passed.
Location in software: Setup Page > Alarm x (1 or 2).

Figure 6.9a - Alarm Latching.

Alarm Silencing

Alarm silencing has two uses:

1. It is often used to allow a system to warm up after it has been started up. With alarm silencing on, an alarm is not triggered when the process temperature is initially lower than the alarm low set point. The process temperature has to enter the normal operating range beyond the hysteresis zone to activate the alarm function.
2. Alarm silencing also allows the operator to disable the alarm output while the controller is in an alarm state. The process temperature has to enter the normal operating range beyond the hysteresis zone to activate the alarm output function.
If the Series F4 has an output that is functioning as a deviation alarm, the alarm is silenced when the set point is changed, until the process value reenters the normal operating range.
Location in software: Setup Page > Alarm x (1 or 2).

Alarm Sides

Alarms can be configured to trigger when the process exceeds the High Alarm Set Point, the Low Alarm Set Point or both.
Location in software: Setup Page > Alarm x (1 or 2).
(Alarm set points are established in the Operations Page.)

Advanced Features

Boost Heat and Boost Cool

The boost heat feature uses a digital output to turn on an additional heater to speed up the heating. As the process temperature approaches the set point, the boost heat output switches off so that the process temperature doesn't overshoot the set point.
Boost cool uses a digital output to speed up the cooling process, typically by activating a solenoid valve that releases liquid nitrogen.
For either boost heat or boost cool, set Boost \% Power to define the power level that must be exceeded before the boost output is activated. Use a positive value for heating, a negative value for cooling.
To prevent the output from cycling and to extend hardware life, define Boost Time Delay in seconds to set the minimum period of time that the output will remain off after an on cycle.
The Series F4 uses digital output 6 for boost heat and digital output 7 for boost cool. Hysteresis for boost heat and cool is fixed at 5%.
Location in software: Setup >Digital Output x (6 or 7).

Figure 6.10a - Boost Heat and Boost Cool.

Compressor Control

The compressor control can save wear on a compressor and prevent it from locking up from short cycling. A bypass valve operated by a control output regulates how the process is cooled, while a digital output switches the compressor on and off.
The Series F4 uses digital output 8 for compressor control. Compressor On \% Power sets the power level that will switch the compressor on. Compressor Off \% Power sets the power level that will switch the compressor off.
The compressor will not turn on until the output power exceeds the Compressor On \% Power for a time longer than the Compressor On Delay. The compressor will not turn off until the output power exceeds the Compressor Off \% Power for a time longer than the Compressor Off Delay.
Location in software: Setup Page $>$ Digital Output 8.

Figure 6.10b - Compressor Power.

Cascade

Cascade control is a control strategy in which one control loop provides the set point for another loop. It allows the process or part temperature to be reached quickly while minimizing overshoot. Cascade is used to optimize the performance of thermal systems with long lag times.
This graph illustrates a thermal system with a long lag time. Curve A represents a single-loop control system with PID parameters that allow a maximum heat-up rate. Too much energy is introduced and the set point is overshot. In most systems with long lag time, the process value may never settle out to an acceptable error. Curve C represents a single-control system tuned to minimize overshoot. This results in unacceptable heat-up rates, taking hours to reach the final value. Curve B shows a cascade system that limits the energy introduced into the system, allowing an optimal heat-up rate with minimal overshoot.
Cascade control uses two control loops (outer and inner) to control the process. The outer loop (analog input 3) monitors the process or part temperature, which is then compared to the set point. The result of the comparison, the error signal, is acted on by the settings in a Cascade Outer Loop PID set (1 to 5), which then generates a power level for the outer loop. The set point for the inner loop is determined by the outer-loop power level and the Cascade Low Range/Deviation and the Cascade High Range/Deviation settings for analog input 3 .
The inner loop (analog input 1) monitors the energy source (heating and cooling), which is compared to the inner loop set point generated by the outer loop. The result of the comparison, the error signal, is acted on by the settings in a Cascade Inner Loop PID set (1 to 5), which generates an output power level between -100% to $+100 \%$. If the power level is positive the heat will be on; if the power level is negative the cool will come on.
In Series F4 controllers, cascade control is available on channel 1. Analog input 3 is used to measure the outer-loop process while analog input 1 , the inner loop, is used to measure the energy source. Power from the energy sources are supplied by outputs 1A and 1 B .
To set up and tune a system for cascade control, see the Operations Chapter.
Location in software: Setup Page and Operations Page.

Figure 6.11a - Control Lag Times.

\checkmark NOTE: Cascade Low Range and Cascade High Range Set Points for Input 1 (as shown above) are setup under Analog Input 3. Refer to Setup Chapter.

Figure 6.11b - Cascade Control.

Figure 6.11 - Cascade Example

Notes

Chapter Seven: Communications

Exception Responses 7.2
Modbus Registers (Alphabetical Order) 7.2
Profiling Registers 7.10
Modbus Registers (Numerical Order) 7.13
Communications Page Parameter Table 7 .16
Profiling Flow Charts 7.17

Overview

The Series F4 uses Modbus as its communications protocol. Modbus is a standard protocol developed by A.E.G. Schneider. Modbus RTU enables a computer or PLC to read and write directly to registers containing the controller's parameters. With it you can read all of the controller's parameters with a few read commands.

If you already have a software application that uses Modbus, the Modbus Registers Table in this chapter will provide the register number and values (sometimes called enumerated types) for each parameter.

Dependencies between parameters do exist. For best results, program the parameters in the order in which they appear in the Software Map (inside back cover).
To program a profile using Modbus, refer to the Profiling Flow Charts in this chapter.
For basic information about writing an application using Modbus protocol, you may want to download the electronic Watlow Controls Data Communications Guide from the Watlow web site:
http:/ / www.watlow.com / prodtechinfo
Search on data communications reference.

Exception Responses

When a controller cannot process a command it returns an exception response and sets the high bit (0 x 80) of the command.
0x01 illegal command
0x02 illegal data address
0 x 03 illegal data value

\checkmark NOTE:

For ranges, conditions and other information, look up parameter names in the Index, which will direct you to earlier chapters in this book.

Series F4 Modbus Registers

Parameters Sorted Alphabetically

Register numbers listed are relative values. To convert to absolute values, add 40001. Registers for profiling parameters are in a separate section at the end of this list, followed by a list of all Modbus registers in numerical order. For more information about parameters, see the Index.

103	\% Power Output 1A, Status
r	0 to 100 (expressed in \%)
107	\% Power Output 1B, Status
r	0 to 100 (expressed in \%)
111	\% Power Output 2A, Status
r	0 to 100 (expressed in \%)
115	\% Power Output 2B, Status
r	0 to 100 (expressed in \%)
102	Alarm 1, Status
r	
106	Alarm 2, Status
r	
303	Alarm High Deviation, Alarm 1, Value
r/w	1 to 30000
322	Alarm High Deviation, Alarm 2, Value
r/w	1 to 30000
303	Alarm High Set Point, Alarm 1, Value
r/w	<per sensor> to Alarm 1 Low Set Point
322	Alarm High Set Point, Alarm 2, Value
r/w	<per sensor> to Alarm 2 Low Set Point
703	Alarm Hysteresis, Alarm Output 1
r/w	1 to 30000
720	Alarm Hysteresis, Alarm Output 2
r/w	1 to 30000
704	Alarm Latching, Alarm Output 1
r/w	0 Alarm Self-clears
	1 Alarm Latches
721	Alarm Latching, Alarm Output 2
r/w	0 Alarm Self-clears
	1 Alarm Latches
707	Alarm Logic, Alarm Output 1
r/w	0 Open on Alarm
	1 Close on Alarm
724	Alarm Logic, Alarm Output 2
r/w	0 Open on Alarm
	1 Close on Alarm
302	Alarm Low Deviation, Alarm 1, Value
r/w	-19999 to -1
321	Alarm Low Deviation, Alarm 2, Value
r/w	-19999 to -1
302	Alarm Low Set Point, Alarm 1, Value
r/w	<per sensor> to Alarm 1 High Set Point
321	Alarm Low Set Point, Alarm 2, Value
r/w	<per sensor> to Alarm 2 High Set Point
708	Alarm Messages, Alarm Output 1
r/w	0 Yes on Main Page
	1 No
725	Alarm Messages, Alarm Output 2
r/w	0 Yes on Main Page
	1 No
1308	Alarm Set Point, Lockout
r/w	0 Full Access
	1 Read Only
	2 Password
	3 Hidden
706	Alarm Sides, Alarm Output 1
r/w	0 Both
	1 Low
	2 High
723	Alarm Sides, Alarm Output 2
r/w	0 Both
	1 Low
	2 High
705	Alarm Silencing, Alarm Output 1
r/w	0 No
	1 Yes

722	Alarm Silencing, Alarm Output 2
r/w	0 No
	1 Yes
716	Alarm Source, Alarm Output 1
r/w	0 Input 1
	1 Input 2
	2 Input 3
733	Alarm Source, Alarm Output 2
r/w	0 Input 1
	1 Input 2
	2 Input 3
702	Alarm Type, Alarm Output 1
r/w	0 Off
	1 Process
	2 Deviation
719	Alarm Type, Alarm Output 2
r/w	0 Off
	1 Process
	2 Deviation
1902	Altitude, Analog Input 2
r/w	$0 \quad 0$ to 2499 ft
	12500 to 4999 ft
	25000 ft and above
606	Analog Input 1 Decimal Point
r/w	00
	100
	2000
	30000
616	Analog Input 2 Decimal Point
r/w	00
	100
	2000
	30000
626	Analog Input 3 Decimal Point
r/w	00
	100
	2000
	30000
836	Analog Range, Retransmit Output 1
r/w	04 to 20mA
	10 to 20 mA
	20 to 5V
	31 to 5 V
	41 to 10V
837	Analog Range, Retransmit Output 2
r/w	04 to 20 mA
	10 to 20 mA
	20 to 5V
	31 to 5V
	41 to 10V
305	Autotune Channel 1
r/w	0 Tune Off
	1 PID Set 1
	2 PID Set 2
	3 PID Set 3
	4 PID Set 4
	5 PID Set 5
324	Autotune Channel 2
r/w	0 Tune Off
	1 PID Set 6
	2 PID Set 7
	3 PID Set 8
	4 PID Set 9
	5 PID Set 10
343	Autotune Cascade
r/w	0 Tune Off
	1 PID Set 1
	2 PID Set 2
	3 PID Set 3
	4 PID Set 4
	5 PID Set 5

1306	Autotune PID, Lockout	717	Control Output 1B Function				
r/w	0 Full Access	r/w	0 Off				
	1 Read Only		1 Heat				
	2 Password		2 Cool				
	3 Hidden	734	Control Output 2A Function				
304	Autotune Set Point, Channel 1, Value	r/w	1 Heat	\checkmark NOTE:			
r/w	50 to 150 (expressed in \%)		2 Cool	For more information about			
323	Autotune Set Point, Channel 2, Value	751	Control Output 2B Function				
r/w	50 to 150 (expressed in \%)	r/w	0 Off	parameters, see the Index.			
2062	Boost Cool \% Power, Digital Output 7		1 Heat				
r/w	-100 to 0 for Cool (expressed in \%)		2 Cool				
2064	Boost Cool Delay On Time, Digital Output 7	1920	Current Date, Day				
r/w	0 to 9999 seconds	r/w	1 to 31				
2062	Boost Cool Power	1919	Current Date, Month				
r/w	Value	r/w	1 to 12				
2064	Boost Cool Time	1921	Current Date, Year				
r/w	Value	r/w	1998 to 2035				
2052	Boost Heat \% Power, Digital Output 6	1916	Current Time, Hour				
r/w	0 to 0 for Heat (expressed in \%)	r/w	0023				
2054	Boost Heat Delay On Time, Digital Output 6	1917	Current Time, Minutes				
r/w	0 to 9999 seconds	r/w	0 to 59				
2052	Boost Heat Power	1918	Current Time, Seconds				
r/w	Value in \%	r/w	0 to 59				
2054	Boost Heat Time	1400-15 Custom Main Page Parameters (P1 to P16)					
r/w	Value in seconds	r/w	0 None				
605	Calibration Offset, Analog Input 1		$\begin{array}{ll}1 & \text { Input I Value } \\ 2 & \text { Input } 2 \text { Value }\end{array}$				
r/w	-19999 to 30000						
615	Calibration Offset, Analog Input 2		3 Input 2 Value				
r/w	Calibration Offset, Analog Input 3		4 Set Point 1				
625			6 \% Power 1				
r/w	-19999 to 30000		7 \% Power 2				
1922	Cascade Inner Set Point		8 Tune Status 1				
r	Cascade Type		${ }_{9} \quad$ Tune Status 2				
1925			10 Time				
r/w	0 No Cascade		11 Date				
	1 Process Cascade		12 Digital Inputs				
	2 Deviation Cascade		13 Digital Outputs				
1926	Cascade, Range Low		14 Time Remaining				
r/w	Depends on Sensor		15 Current File				
1927	Cascade, Range High		16 Current Step				
r/w	Depends on Sensor		17 Active Ch1 PID Set				
1330-33	Change Password		18 Active Ch2 PID Set				
r/w	ASCII codes 0-9, A-Z		19 Last Jump Step				
1501	CJC1 AtoD, Diagnostics		21 Wait For Status				
r	HHHH see In 1 AD		22 Step Type				
1500	CJC1 Temp, Diagnostics		23 Target Set Point 1				
r	CJC2 AtoD, Diagnostics		24 Target Set Point 2				
1532			25 Internal Cascade Se	Point			
r	CJC2 Temp, Diagnostics		26 Custom Message 1				
1531			27 Custom Message 2				
r	value		28 Custom Message 3				
312	Clear Alarm 1, Key Press Simulation		29 Custom Message 4				
w	write any value		30 Input1 Cal. Offset				
331	Clear Alarm 2, Key Press Simulation		31 Input2 Cal. Offset				
w	write any value		32 Input3 Cal. Offset				
311	Clear Error 1, Key Press Simulation 4501-18		Custom Message 1				
w	write any value	r/w					
330	Clear Error 2, Key Press Simulation	4521-38 Custom Message 2					
w	write any value						
349	Clear Error 3, Key Press Simulation	4541-58 Custom Message 3					
w	write any value						
1315	Clear Locks	$\mathrm{r} / \mathrm{w}$$4561-78$ Custom Message 4					
	0 yes	4561-78 Custom Message 4					
2046	Complementary Output, Digital Output 5	509	Cycle Time (type), Control Output 1A				
	0 1A		0 Variable Burst				
	1 1B		1 Fixed Time				
	2 2A	506	Cycle Time Value, Control Out	put 1A			
	3 2B	r/w	number				
2073		559	Cycle Time (type), Control Output 1B				
r/w	Compressor On \% Power to 100\%	r/w	0 Variable Burst				
2075	Compressor Off Delay, Digital Output 8		1 Fixed Time				
r/w	0 to 9999 seconds	556	Cycle Time Value, Control Output 1B				
2072	Compressor On \% Power, Digital Output 8	r/w	number				
r/w	-100 to 100 (expressed in percent)	2509	Cycle Time (type), Control Output 2A				
2074		r/w	0 Variable Burst				
r/w	1 to 9999 seconds		1 Fixed Time				
	Control Output Calibration - see Process Output Calibration	2506	Cycle Time Value, Control Output 2A,				
700	Control Output 1A Function	2559	Cycle Time (type), Control Output 2B				
r/w	$1 \begin{array}{ll}1 & \text { Heat } \\ 2 & \text { Cool }\end{array}$						
			1 Fixed Time				

Cycle Time Value, Control Output 2B number
Dead Band 1A, Cascade PID Set 1, Channel 1 0 to 30000
Dead Band 1A, Cascade PID Set 2, Channel 1 0 to 30000
Dead Band 1A, Cascade PID Set 3, Channel 1 0 to 30000
Dead Band 1A, Cascade PID Set 4, Channel 1 0 to 30000
Dead Band 1A, Cascade PID Set 5, Channel 1 0 to 30000
Dead Band 1A, PID Set 1, Channel 1 0 to 30000
Dead Band 1A, PID Set 2, Channel 1 0 to 30000
Dead Band 1A, PID Set 3, Channel 1 0 to 30000
Dead Band 1A, PID Set 4, Channel 1 0 to 30000
Dead Band 1A, PID Set 5, Channel 1 0 to 30000
Dead Band 1B, Cascade PID Set 1, Channel 1 0 to 30000
Dead Band 1B, Cascade PID Set 2, Channel 1 0 to 30000
Dead Band 1B, Cascade PID Set 3, Channel 1 0 to 30000
Dead Band 1B, Cascade PID Set 4, Channel 1 0 to 30000
Dead Band 1B, Cascade PID Set 5, Channel 1 0 to 30000
Dead Band 1B, PID Set 1, Channel 1 0 to 30000
Dead Band 1B, PID Set 2, Channel 1 0 to 30000
Dead Band 1B, PID Set 3, Channel 1 0 to 30000
Dead Band 1B, PID Set 4, Channel 1 0 to 30000
Dead Band 1B, PID Set 5, Channel 1 0 to 30000
Dead Band 2A, PID Set 6, Channel 2 1 to 30000
Dead Band 2A, PID Set 7, Channel 2 1 to 30000
Dead Band 2A, PID Set 8, Channel 2 1 to 30000
Dead Band 2A, PID Set 9, Channel 2 1 to 30000
Dead Band 2A, PID Set 10, Channel 2 1 to 30000
Dead Band 2B, PID Set 6, Channel 2 1 to 30000
Dead Band 2B, PID Set 7, Channel 2 1 to 30000
Dead Band 2B, PID Set 8, Channel 2 1 to 30000
Dead Band 2B, PID Set 9, Channel 2 1 to 30000
Dead Band 2B, PID Set 10, Channel 2 1 to 30000
Derivative 1A, Cascade PID Set 1, Channel 1 000 to 999 (expressed in hundredths of minutes)
Derivative 1A, Cascade PID Set 2, Channel 1 000 to 999 (expressed in hundredths of minutes)
Derivative 1A, Cascade PID Set 3, Channel 1 000 to 999 (expressed in hundredths of minutes)
Derivative 1A, Cascade PID Set 4, Channel 1 000 to 999 (expressed in hundredths of minutes)
Derivative 1A, Cascade PID Set 5, Channel 1 000 to 999 (expressed in hundredths of minutes)
Derivative 1A, PID Set 1, Channel 1 000 to 999 (expressed in hundredths of minutes)
Derivative 1A, PID Set 2, Channel 1 000 to 999 (expressed in hundredths of minutes)
Derivative 1A, PID Set 3, Channel 1 000 to 999 (expressed in hundredths of minutes)
Derivative 1A, PID Set 4, Channel 1 000 to 999 (expressed in hundredths of minutes)

Derivative 1A, PID Set 5, Channel 1
000 to 999 (expressed in hundredths of minutes)
Derivative 1B, Cascade PID Set 1, Channel 1
000 to 999 (expressed in hundredths of minutes)
Derivative 1B, Cascade PID Set 2, Channel 1 000 to 999 (expressed in hundredths of minutes)
Derivative 1B, Cascade PID Set 3, Channel 1 000 to 999 (expressed in hundredths of minutes)
Derivative 1B, Cascade PID Set 4, Channel 1 000 to 999 (expressed in hundredths of minutes)
Derivative 1B, Cascade PID Set 5, Channel 1
000 to 999 (expressed in hundredths of minutes)
Derivative 1B, PID Set 1, Channel 1
000 to 999 (expressed in hundredths of minutes)
Derivative 1B, PID Set 2, Channel 1
000 to 999 (expressed in hundredths of minutes)
Derivative 1B, PID Set 3, Channel 1
000 to 999 (expressed in hundredths of minutes)
Derivative 1B, PID Set 4, Channel 1
000 to 999 (expressed in hundredths of minutes)
Derivative 1B, PID Set 5, Channel 1
000 to 999 (expressed in hundredths of minutes)
Derivative 2A, PID Set 6, Channel 2
000 to 999 (expressed in hundredths of minutes)
Derivative 2A, PID Set 7, Channel 2
000 to 999 (expressed in hundredths of minutes)
Derivative 2A, PID Set 8, Channel 2
000 to 999 (expressed in hundredths of minutes)
Derivative 2A, PID Set 9, Channel 2
000 to 999 (expressed in hundredths of minutes)
Derivative 2A, PID Set 10, Channel 2
000 to 999 (expressed in hundredths of minutes)
Derivative 2B, PID Set 6, Channel 2
000 to 999 (expressed in hundredths of minutes)
Derivative 2B, PID Set 7, Channel 2
000 to 999 (expressed in hundredths of minutes)
Derivative 2B, PID Set 8, Channel 2
000 to 999 (expressed in hundredths of minutes)
Derivative 2B, PID Set 9, Channel 2
000 to 999 (expressed in hundredths of minutes)
Derivative 2B, PID Set 10, Channel 2
000 to 999 (expressed in hundredths of minutes)
Digital Input 1, Status
0 Low
1 High

0 Low
1 High
Digital Input 1 Function
0 Off
Panel Lock
Reset Alarm Control Outputs Off All Outputs Off Digital Outputs Off
Start Profile
7 Pause Profile
8 Resume Profile
9 Terminate Profile
10 Wait For Event

Input 1, Start Profile 1 to 40
Digital Input 1, Start Step 1 to 256
Digital Input 2, Status
1 Low
1 High
Digital Input 2 Condition
0 Low
1 High
ital Input 2 Function
Off
Panel Lock
Reset Alarm Control Outputs Off All Outputs Off Digital Outputs Off Start Profile Pause Profile Resume Profile Terminate Profile
10 Wait For Event

$\begin{aligned} & 1077 \\ & \text { r/w } \end{aligned}$	Digital Input 2, Start Profile 1 to 40
$\begin{aligned} & 1078 \\ & \text { r/w } \end{aligned}$	Digital Input 2, Start Step $1 \text { to } 256$
225	Digital Input 3, Status 0 Low 1 High
$\begin{aligned} & 1065 \\ & \text { r/w } \end{aligned}$	Digital Input 3 Condition 0 Low 1 High
$\begin{aligned} & 1064 \\ & \text { r/w } \end{aligned}$	Digital Input 3 Function 0 Off 1 Panel Lock 2 Reset Alarm 3 Control Outputs Off 4 All Outputs Off 5 Digital Outputs Off 6 Start Profile 7 Pause Profile 8 Resume Profile 9 Terminate Profile 10 Wait For Event
$\begin{aligned} & 1079 \\ & \text { r/w } \end{aligned}$	Digital Input 3, Start Profile 1 to 40
$\begin{aligned} & 1080 \\ & \text { r/w } \end{aligned}$	Digital Input 3, Start Step 1 to 256
237	Digital Input 4, Status 0 Low 1 High
$\begin{aligned} & 1067 \\ & \text { r/w } \end{aligned}$	Digital Input 4 Condition 0 Low 1 High
$\begin{aligned} & 1066 \\ & \text { r/w } \end{aligned}$	Digital Input 4 Function 0 Off 1 Panel Lock 2 Reset Alarm 3 Control Outputs Off 4 All Outputs Off 5 Digital Outputs Off 6 Start Profile 7 Pause Profile 8 Resume Profile 9 Terminate Profile 10 Wait For Event
$\begin{aligned} & 1081 \\ & \text { r/w } \end{aligned}$	Digital Input 4, Start Profile 1 to 40
$\begin{aligned} & 1082 \\ & \text { r/w } \end{aligned}$	Digital Input 4, Start Step 1 to 256
2000	Digital Output 1, Condition 0 Off 1 On
2001	Digital Output 1 Function 0 Off 1 Event Output
2010	Digital Output 2, Condition 0 Off 1 On
$\begin{aligned} & 2011 \\ & \text { r/w } \end{aligned}$	Digital Output 2 Function 0 Off 1 Event Output
2020	Digital Output 3, Condition 0 Off 1 On
2021	Digital Output 3 Function 0 Off 1 Event Output
$\begin{aligned} & 2030 \\ & \text { r/w } \end{aligned}$	Digital Output 4, Condition 0 Off 1 On
2031	Digital Output 4 Function 0 Off 1 Event Output
$\begin{aligned} & 2040 \\ & \text { r/w } \end{aligned}$	Digital Output 5, Condition 0 Off 1 On
$\begin{aligned} & 2041 \\ & \text { r/w } \end{aligned}$	```Digital Output 5 Function 0 Off 1 Event Output 2 Complementary Output```

748	High Power Limit, Control Output 2A
r/w	Low Limit+1 to 100 (expressed in \%)
765	High Power Limit, Control Output 2B
r/w	Low Limit+1 to 100 (expressed in \%)
711	High Scale, Retransmit Output 1
r/w	Low Scale +1 to 30000 (maximum sensor range)
728	High Scale, Retransmit Output 2
r/w	Low Scale +1 to 30000 (maximum sensor range)
2607	Hysteresis 1A, Cascade PID Set 1, Channel 1
r/w	1 to 30000 (dependent on decimal setting)
2617	Hysteresis 1A, Cascade PID Set 2, Channel 1
r/w	1 to 30000 (dependent on decimal setting)
2627	Hysteresis 1A, Cascade PID Set 3, Channel 1
r/w	1 to 30000 (dependent on decimal setting)
2637	Hysteresis 1A, Cascade PID Set 4, Channel 1
r/w	1 to 30000 (dependent on decimal setting)
2647	Hysteresis 1A, Cascade PID Set 5, Channel 1
r/w	1 to 30000 (dependent on decimal setting)
507	Hysteresis 1A, PID Set 1, Channel 1
r/w	1 to 30000 (dependent on decimal setting)
517	Hysteresis 1A, PID Set 2, Channel 1
r/w	1 to 30000 (dependent on decimal setting)
527	Hysteresis 1A, PID Set 3, Channel 1
r/w	1 to 30000 (dependent on decimal setting)
537	Hysteresis 1A, PID Set 4, Channel 1
r/w	1 to 30000 (dependent on decimal setting)
547	Hysteresis 1A, PID Set 5, Channel 1
r/w	1 to 30000 (dependent on decimal setting)
2657	Hysteresis 1B, Cascade PID Set 1, Channel 1
r/w	1 to 30000 (dependent on decimal setting)
2667	Hysteresis 1B, Cascade PID Set 2, Channel 1
r/w	1 to 30000 (dependent on decimal setting)
2677	Hysteresis 1B, Cascade PID Set 3, Channel 1
r/w	1 to 30000 (dependent on decimal setting)
2687	Hysteresis 1B, Cascade PID Set 4, Channel 1
r/w	1 to 30000 (dependent on decimal setting)
2697	Hysteresis 1B, Cascade PID Set 5, Channel 1
r/w	1 to 30000 (dependent on decimal setting)
557	Hysteresis 1B, PID Set 1, Channel 1
r/w	1 to 30000 (dependent on decimal setting))
567	Hysteresis 1B, PID Set 2, Channel 1
r/w	1 to 30000 (dependent on decimal setting)
577	Hysteresis 1B, PID Set 3, Channel 1
r/w	1 to 30000 (dependent on decimal setting)
587	Hysteresis 1B, PID Set 4, Channel 1
r/w	1 to 30000 (dependent on decimal setting)
597	Hysteresis 1B, PID Set 5, Channel 1
r/w	1 to 30000 (dependent on decimal setting)
2507	Hysteresis 2A, PID Set 6, Channel 2
r/w	1 to 30000 (dependent on decimal setting)
2517	Hysteresis 2A, PID Set 7, Channel 2
r/w	1 to 30000 (dependent on decimal setting)
2527	Hysteresis 2A, PID Set 8, Channel 2
r/w	1 to 30000 (dependent on decimal setting)
2537	Hysteresis 2A, PID Set 9, Channel 2
r/w	1 to 30000 (dependent on decimal setting)
2547	Hysteresis 2A, PID Set 10, Channel 2
r/w	1 to 30000 (dependent on decimal setting)
2557	Hysteresis 2B, PID Set 6, Channel 2
r/w	1 to 30000 (dependent on decimal setting)
2567	Hysteresis 2B, PID Set 7, Channel 2
r/w	1 to 30000 (dependent on decimal setting)
2577	Hysteresis 2B, PID Set 8, Channel 2
r/w	1 to 30000 (dependent on decimal setting)
2587	Hysteresis 2B, PID Set 9, Channel 2
r/w	1 to 30000 (dependent on decimal setting)
2597	Hysteresis 2B, PID Set 10, Channel 2
r/w	1 to 30000 (dependent on decimal setting)
308	Idle Set Point, Channel 1, Power Out Action
r/w	number
327	Idle Set Point, Channel 2, Power Out Action
r/w	number
1504	Input 1 AtoD, Diagnostics
r	HHHH
101	Input 1 Error, Status
903	Input 1 Fail \% Power, System
r/w	-100 to 100 (expressed in \%)
210	Input 1 Open Loop, Status

Input 1, Calibrate
10 mV Thermocouple
250 mV Thermocouple
332° Type J
4 Ground
5 Lead
$6 \quad 15.0$ ohms
7380.0 ohms
$8 \quad 0.000 \mathrm{~V}$
$9 \quad 10.000 \mathrm{~V}$
$10 \quad 4.000 \mathrm{~mA}$
1120.000 mA

1505 Input 2 AtoD, Diagnostics HHHH
Input 2 Error, Status
Input 2 Fail \% Power, System
-100 to 100 (expressed in \%)
Input 2 Open Loop, Status
Input 2 Type, Diagnostics
Univ
None

Input 2, Calibrate 0 mV Thermocouple 250 mV Thermocouple 32° Type J 4 Ground Lead 15.0 ohms 380.0 ohms 80.000 V 910.000 V
104.000 mA
1120.000 mA
1120.000 mA

Input 1 Value, Status
value
put 2 Value, Status
value
ut 3 AtoD, Diagnostics
HHHH
Input 3 Error, Status
Input 3 Type, Diagnostics Univ None
Input 3 Value, Status
ue
ral 1A , Cascade PID Set 1, Channel 1
Integral 1A , Cascade PID Set 2, Channel 1

Integral 1A , Cascade PID Set 3, Channel 1
000 to 9999 (expressed in hundredths of minutes)
Integral 1A , Cascade PID Set 4, Channel 1
Integral 1A , Cascade PID Set 5, Channel 1
Integral 1A , PID Set 1, Channel 1
Integral 1A , PID Set 2, Channel 1

Integral 1A , PID Set 3, Channel 1

Integral 1A , PID Set 4, Channel 1
000 to 9999 (expressed in hundredths of minutes)
Integral 1A , PID Set 5, Channel 1

Input 1 Type, Diagnostics Univ

000 to 9999 (expressed in hundredths of minutes)
000 to 9999 (expressed in hundredths of minutes)

000 to 9999 (expressed in hundredths of minutes)

000 to 9999 (expressed in hundredths of minutes)
000 to 9999 (expressed in hundredths of minutes)
000 to 9999 (expressed in hundredths of minutes)
000 to 9999 (expressed in hundredths of minutes)

000 to 9999 (expressed in hundredths of minutes)

Integral 1B , Cascade PID Set 1, Channel 1
000 to 9999 (expressed in hundredths of minutes)
3210-19 Name, Alarm 2 (10 characters)
r/w ASCII equivalent decimal code - see Modbus Naming Flowchart
3000-06 Name, Digital Input 1 (7 characters)
r/w ASCII equivalent decimal code - see Modbus Naming Flowchart
3010-16 Name, Digital Input 2 (7 characters)
r/w ASCII equivalent decimal code - see Modbus Naming Flowchart
3020-26 Name, Digital Input 3 (7 characters)
r/w ASCII equivalent decimal code - see Modbus Naming Flowchart
3030-36 Name, Digital Input 4 (7 characters)
r/w ASCII equivalent decimal code - see Modbus Naming Flowchart
3100-09 Name, Digital Output 1 (10 characters)
r/w ASCII equivalent decimal code - see Modbus Naming Flowchart
3110-19 Name, Digital Output 2 (10 characters)
r/w ASCII equivalent decimal code - see Modbus Naming Flowchart

312

r/w ASCII equivalent decimal code - see Modbus Naming Flowchart

3130-39 Name, Digital Output 4 (10 characters)

r/w ASCII equivalent decimal code - see Modbus Naming Flowchart

3140-49 Name, Digital Output 5 (10 characters)

r/w ASCII equivalent decimal code - see Modbus Naming Flowchart

3150-59 Name, Digital Output 6 (10 characters)

r/w ASCII equivalent decimal code - see Modbus Naming Flowchart

3160-69 Name, Digital Output 7 (10 characters)

r/w ASCII equivalent decimal code - see Modbus Naming Flowchart

3170-79 Name, Digital Output 8 (10 characters)

r/w ASCII equivalent decimal code - see Modbus Naming Flowchart
904 Open Loop Channel 1
r/w Off

Open Loop Channel 2
0 Off
1 On
Operation Mode, Status
0 Terminate Profile
1 Pre-run Profile
2 Running Profile
3 Holding Profile
Output 1A Type, Diagnostics
1 DC
2 SSR
3 Process
Output 1B Type, Diagnostics
$\begin{array}{lll}r & 0 & \text { None } \\ & 1 & \text { DC }\end{array}$
2 SSR
3 Process
Output 2A Type, Diagnostics
0 None
1 DC
2 SSR
3 Process
Output 2B Type, Diagnostics
0 None
1 DC
2 SSR
3 Process
900 PID Units, System
r/w 0 US (Reset/Rate)
1 SI (Integral/Derivative)
1206 Power-Out Action
r/w 0 Continue
1 Hold
2 Terminate
3 Reset
4 Idle Set Point 1
5 Idle Set Point 2
1213 Power-Out Time 0 to 9999 seconds
Process Display
0 Input 1 only
1 Alternating

Process Display, Input 1 Time 0 to 999
Process Display, Input 2 Time 0 to 999
Process Display, Input 3 Time 0 to 999
Process Output 1A, 1.000V, Calibrate 0000 to 3000 (expressed in thousandths volts)
Process Output 1A, 10.000V, Calibrate 0000 to 12000 (expressed in thousandths volts)
Process Output 1A, $\mathbf{2 0 . 0 0 0 m A}$, Calibrate 0000 to 24000 (expressed in microamps)
Process Output 1A, 4.000 mA , Calibrate 0000 to 6000 (expressed in microamps)
Process Output 1B, 1.000V, Calibrate 0000 to 3000 (expressed in thousandths volts)
Process Output 1B, 10.000V, Calibrate 0000 to 12000 (expressed in thousandths volts)
Process Output 1B, $\mathbf{2 0 . 0 0 0 \mathrm { mA } \text { , Calibrate }}$ 0000 to 24000 (expressed in microamps)

NOTE:
For more information
about parameters, see the Index.

1609 w	Process Output 1B, 4.000mA, Calibrate 0000 to 6000 (expressed in microamps)	$\begin{aligned} & 540 \\ & \mathrm{r} / \mathrm{w} \end{aligned}$	Proportional Band 1A, PID Set 5, Channel 1 0 to 30000
1616 w	Process Output 2A, 1.000V, Calibrate 0000 to 3000 (expressed in thousandths volts)	$\begin{aligned} & 2650 \\ & r / w \end{aligned}$	Proportional Band 1B, Cascade PID Set 1, Channel 1 0 to 30000
1617	Process Output 2A, 10.000V, Calibrate 0000 to 12000 (expressed in thousandths volts)	2660	Proportional Band 1B, Cascade PID Set 2, Channel 1
1615	Process Output 2A, $\mathbf{2 0 . 0 0 0 m A , ~ C a l i b r a t e ~}$	r/w	0 to 30000
w	0000 to 24000 (expressed in microamps)	2670	Proportional Band 1B, Cascade PID Set 3, Channel 1
1614	Process Output 2A, 4.000 mA , Calibrate	r/w	0 to 30000
w	0000 to 6000 (expressed in microamps)	2680	Proportional Band 1B, Cascade PID Set 4, Channel 1
1621	Process Output 2B, 1.000V, Calibrate	r/w	0 to 30000
w	0000 to 3000 (expressed in thousandths volts)	2690	Proportional Band 1B, Cascade PID Set 5, Channel 1
1622	Process Output 2B, 10.000V, Calibrate	r/w	0 to 30000
w	0000 to 12000 (expressed in thousandths volts)	550	Proportional Band 1B, PID Set 1, Channel 1
1620	Process Output 2B, $\mathbf{2 0 . 0 0 0 m A , ~ C a l i b r a t e ~}$	r/w	0 to 30000
w	0000 to 24000 (expressed in microamps)	560	Proportional Band 1B, PID Set 2, Channel 1
1619	Process Output 2B, 4.000 mA , Calibrate	r/w	0 to 30000
w	0000 to 6000 (expressed in microamps)	570	Proportional Band 1B, PID Set 3, Channel 1
608	Process Units, Analog Input	r/w	0 to 30000
r/w	$\begin{array}{ll}0 & \text { Temperature } \\ 1 & \text { \%rh }\end{array}$	$\begin{aligned} & 580 \\ & \mathrm{r} / \mathrm{w} \end{aligned}$	Proportional Band 1B, PID Set 4, Channel 1 0 to 30000
	$\begin{array}{ll} 2 & \text { psi } \\ 3 & \text { units } \end{array}$	$\begin{aligned} & 590 \\ & \text { r/w } \end{aligned}$	Proportional Band 1B, PID Set 5, Channel 1 0 to 30000
618 r/w	Process Units, Analog Input 2 0 Temperature	$\begin{aligned} & 2500 \\ & \text { r/w } \end{aligned}$	Proportional Band 2A, PID Set 6, Channel 2 0 to 30000
	$\begin{array}{ll} 1 & \% \text { rh } \\ 2 & \text { psi } \\ 3 & \text { units } \end{array}$	$\begin{aligned} & 2510 \\ & \text { r/w } \end{aligned}$	Proportional Band 2A, PID Set 7, Channel 2 0 to 30000
628	Process Units, Analog Input 3 0 Temperature	2520	Proportional Band 2A, PID Set 8, Channel 2 0 to 30000
	1 \%rh	2530	Proportional Band 2A, PID Set 9, Channel 2
	2 psi	r/w	0 to 30000
	3 units	2540	Proportional Band 2A, PID Set 10, Channel 2
701	Process, Control Output 1A	r/w	0 to 30000
r/w	$\begin{array}{ll} 0 & 4 \text { to } 20 \mathrm{~mA} \\ 1 & 0 \text { to } 20 \mathrm{~mA} \end{array}$	2550 r/w	Proportional Band 2B, PID Set 6, Channel 2 0 to 30000
	20 to 10 V	2560	Proportional Band 2B, PID Set 7, Channel 2
	30 to 5 V	r/w	$0 \text { to } 30000$
	41 to 5V	2570	Proportional Band 2B, PID Set 8, Channel 2
718	Process, Control Output 1B	r/w	0 to 30000
r/w	$\begin{array}{ll} 0 & 4 \text { to } 20 \mathrm{~mA} \\ 1 & 0 \text { to } 20 \mathrm{~mA} \end{array}$	2580	Proportional Band 2B, PID Set 9, Channel 2
	20 to 10 V	r/w	0 to 30000
	30 to 5V	2590	Proportional Band 2B, PID Set 10, Channel 2
	41 to 5V	r/w	0 to 30000
735	Process, Control Output 2A	2604	Rate 1A, Cascade PID Set 1, Channel 1
r/w	04 to 20 mA	r/w	000 to 999 (expressed in hundredths of minutes)
	10 to 20 mA	2614	Rate 1A, Cascade PID Set 2, Channel 1
	20 to 10V	r/w	000 to 999 (expressed in hundredths of minutes)
	30 to 5V	2624	Rate 1A, Cascade PID Set 3, Channel 1
	41 to 5V	r/w	000 to 999 (expressed in hundredths of minutes)
752	Process, Control Output 2B	2634	Rate 1A, Cascade PID Set 4, Channel 1
r/w	04 to 20mA	r/w	000 to 999 (expressed in hundredths of minutes)
	$\begin{array}{ll} 1 & 0 \text { to } 20 \mathrm{~mA} \\ 2 & 0 \text { to } 10 \mathrm{VV} \end{array}$	2644	Rate 1A, Cascade PID Set 5, Channel 1
	$\begin{array}{ll} 2 & 0 \text { to } 10 \mathrm{~V} \\ 3 & 0 \text { to } 5 \mathrm{l} \end{array}$	r/w	000 to 999 (expressed in hundredths of minutes)
	41 to 5V	504	Rate 1A, PID Set 1, Channel 1
1309	Profiles, Lockout	r/w	000 to 999 (expressed in hundredths of minutes)
r/w	0 Full Access	514	Rate 1A, PID Set 2, Channel 1
	1 Read Only	r/w	000 to 999 (expressed in hundredths of minutes)
	2 Password	524	Rate 1A, PID Set 3, Channel 1
	3 Hidden	r/w	000 to 999 (expressed in hundredths of minutes)
2600	Proportional Band 1A, Cascade PID Set 1, Channel 1	534	Rate 1A, PID Set 4, Channel 1
r/w	0 to 30000	r/w	000 to 999 (expressed in hundredths of minutes)
2610	Proportional Band 1A, Cascade PID Set 2, Channel 1	544	Rate 1A, PID Set 5, Channel 1
r/w	0 to 30000	r/w	000 to 999 (expressed in hundredths of minutes)
2620	Proportional Band 1A, Cascade PID Set 3, Channel 1	2654	Rate 1B, Cascade PID Set 1, Channel 1
r/w	0 to 30000	r/w	000 to 999 (expressed in hundredths of minutes)
2630	Proportional Band 1A, Cascade PID Set 4, Channel 1	2664	Rate 1B, Cascade PID Set 2, Channel 1
r/w	0 to 30000	r/w	000 to 999 (expressed in hundredths of minutes)
2640	Proportional Band 1A, Cascade PID Set 5, Channel 1	2674	Rate 1B, Cascade PID Set 3, Channel 1
r/w	0 to 30000	r/w	000 to 999 (expressed in hundredths of minutes)
500	Proportional Band 1A, PID Set 1, Channel 1	2684	Rate 1B, Cascade PID Set 4, Channel 1
r/w	0 to 30000	r/w	000 to 999 (expressed in hundredths of minutes)
510	Proportional Band 1A, PID Set 2, Channel 1	2694	Rate 1B, Cascade PID Set 5, Channel 1
r/w	0 to 30000	r/w	000 to 999 (expressed in hundredths of minutes)
520	Proportional Band 1A, PID Set 3, Channel 1	554	Rate 1B, PID Set 1, Channel 1
r/w	0 to 30000	r/w	000 to 999 (expressed in hundredths of minutes)
530	Proportional Band 1A, PID Set 4, Channel 1	564	Rate 1B, PID Set 2, Channel 1
r/w	0 to 30000	r/w	000 to 999 (expressed in hundredths of minutes)

574	Set 3,
r/w	000 to 999 (expressed in hundredths of minutes)
584	Rate 1B, PID Set 4, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)S
594	Rate 1B, PID Set 5, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
2504	Rate 2A, PID Set 6, Channel 2
r/w	000 to 999 (expressed in hundredths of minutes)
2514	Rate 2A, PID Set 7, Channel 2
r/w	000 to 999 (expressed in hundredths of minutes)
2524	Rate 2A, PID Set 8, Channel 2
r/w	000 to 999 (expressed in hundredths of minutes)
2534	Rate 2A, PID Set 9, Channel 2
r/w	000 to 999 (expressed in hundredths of minutes)
2544	Rate 2A, PID Set 10, Channel 2
r/w	000 to 999 (expressed in hundredths of minutes)
2554	Rate 2B, PID Set 6, Channel 2
r/w	000 to 999 (expressed in hundredths of minutes)
2564	Rate 2B, PID Set 7, Channel 2
r/w	000 to 999 (expressed in hundredths of minutes)
2574	Rate 2B, PID Set 8, Channel 2
r/w	000 to 999 (expressed in hundredths of minutes)
2584	Rate 2B, PID Set 9, Channel 2
r/w	000 to 999 (expressed in hundredths of minutes)
2594	Rate 2B, PID Set 10, Channel 2
r/w	000 to 999 (expressed in hundredths of minutes)
2602	Reset 1A, Cascade PID Set 1, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
2612	Reset 1A, Cascade PID Set 2, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
2622	Reset 1A, Cascade PID Set 3, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
2632	Reset 1A, Cascade PID Set 4, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
2642	Reset 1A, Cascade PID Set 5, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
502	Reset 1A, PID Set 1, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
512	Reset 1A, PID Set 2, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
522	Reset 1A, PID Set 3, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
532	Reset 1A, PID Set 4, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
542	Reset 1A, PID Set 5, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
2652	Reset 1B, Cascade PID Set 1, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
2662	Reset 1B, Cascade PID Set 2, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
2672	Reset 1B, Cascade PID Set 3, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
2682	Reset 1B, Cascade PID Set 4, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
2692	Reset 1B, Cascade PID Set 5, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
552	Reset 1B, PID Set 1, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
562	Reset 1B, PID Set 2, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
572	Reset 1B, PID Set 3, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
582	Reset 1B, PID Set 4, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
592	Reset 1B, PID Set 5, Channel 1
r/w	000 to 999 (expressed in hundredths of minutes)
2502	Reset 2A, PID Set 6, Channel 2
r/w	000 to 999 (expressed in hundredths of minutes)
2512	Reset 2A, PID Set 7, Channel 2
r/w	000 to 999 (expressed in hundredths of minutes)
2522	Reset 2A, PID Set 8, Channel 2
r/w	000 to 999 (expressed in hundredths of minutes)
2532	Reset 2A, PID Set 9, Channel 2
r/w	000 to 999 (expressed in hundredths of minutes)
2542	Reset 2A, PID Set 10, Channel 2
r/w	000 to 999 (expressed in hundredths of minutes)
2552	Reset 2B, PID Set 6, Channel 2
r/w	000 to 999 (expressed in hundredths per minutes)

Reset 2B, PID Set 7, Channel 2

000 to 999 (expressed in hundredths of minutes)
Reset 2B, PID Set 8, Channel 2
000 to 999 (expressed in hundredths of minutes)
Reset 2B, PID Set 9, Channel 2
000 to 999 (expressed in hundredths of minutes)
Reset 2B, PID Set 10, Channel 2
000 to 999 (expressed in hundredths of minutes)
Restore Factory Calibration

0 Input 1
1 Input 2
Retransmit 1 Type, Diagnostics
0 None
1 Process
Retransmit 2 Type, Diagnostics
0 None
1 Process
Retransmit Output 1, 1.000V, Calibrate
0000 to 3000 (expressed in thousandths volts)
Retransmit Output 1, 10.000V, Calibrate 0000 to 12000 (expressed in thousandths volts)
Retransmit Output 1, $\mathbf{2 0 . 0 0 0 m A , ~ C a l i b r a t e ~}$ 0000 to 24000 (expressed in microamps)
Retransmit Output 1, 4.000 mA , Calibrate
0000 to 6000 (expressed in microamps)
Retransmit Output 2, 1.000V, Calibrate
0000 to 3000 (expressed in thousandths volts)
Retransmit Output 2, 10.000V, Calibrate 0000 to 12000 (expressed in thousandths volts)
Retransmit Output 2, $\mathbf{2 0 . 0 0 0 \mathrm { mA } \text { , Calibrate }}$ 0000 to 24000 (expressed in microamps)
Retransmit Output 2, 4.000 mA
0000 to 6000 (expressed in microamps)
Retransmit Source, Retransmit Output 1
$0 \quad$ Input 1
1 Input 2
2 Input 3
3 Set Point 1
4 Set Point 2
5 Channel 1 Power
6 Channel 2 Power
Retransmit Source, Retransmit Output 2
0 Input 1
1 Input 2
2 Input 3
3 Set Point 1
4 Set Point 2
5 Channel 1 Power
6 Channel 2 Power
Save Changes to EE 0 Save
Scale High, Analog Input 1
Depends on sensor and decimal point selection.
Scale High, Analog Input 2
Depends on sensor and decimal point selection.

Scale High, Analog Input 3

Depends on sensor and decimal point selection.
Scale Low, Analog Input 1
Depends on sensor and decimal point selection.
Scale Low, Analog Input 2
Depends on sensor and decimal point selection.
Scale Low, Analog Input 3
Depends on sensor and decimal point selection.
Scale Offset, Retransmit Output 1
-19999 to 30000
Range Low to Range High
Scale Offset, Retransmit Output 2
-19999 to 30000
Range Low to Range High
Sensor Type, Analog Input 1
E
E
N
C
C
D
PT2
${ }_{\mathrm{R}}^{\mathrm{R}} \mathrm{D}^{2}$
R
S

	11 100 ${ }^{\text {D DIN RTD }}$	2	Serial Number, Second Part, Diagnostics
	12100Ω JIS RTD	r	0 to 999999
	134 to 20 mA		Set Locks - see individual items to lock
	1400 to 20 mA	1330-33	Set Password
	$\begin{array}{ll}15 & 0 \text { to } 5 \mathrm{~V} \\ 16 & 1 \text { to } 5 \mathrm{~V}\end{array}$	r/w	ASCII codes 0-9, A-Z
	170 to 10V	300	Set Point 1, Value
	180 to 50 mV	r/w	Range Low 1 to Range High 1
	23500Ω DIN RTD	319	Set Point 2, Value
	24500Ω JIS RTD	r/w	Range Low 2 to Range High 2
	$251 \mathrm{k} \Omega$ DIN RTD	603	Set Point High Limit, Analog Input 1
	26 1k Ω JIS RTD	r/w	Depends on Sensor
611	Sensor Type, Analog Input 2	613	Set Point High Limit, Analog Input 2
r/w	$\begin{array}{ll}0 & \mathrm{~J} \\ 1\end{array}$	r/w	Depends on Sensor
	2 T	623	Set Point High Limit, Analog Input 3
	3 E	r/w	Depends on Sensor
	4 N	602	Set Point Low Limit, Analog Input 1
	5 C	r/w	Depends on Sensor
	6 D	612	Set Point Low Limit, Analog Input 2
	7 PT2	r/w	Depends on Sensor
	$\begin{array}{ll}8 & \mathrm{R} \\ 9 & \mathrm{~S}\end{array}$	622	Set Point Low Limit, Analog Input 3
	10 B	r/w	Depends on Sensor
	11 100 2 DIN RTD	1300	Set Point, Lockout
	12100Ω JIS RTD	r/w	0 Full Access
	134 to 20 mA		1 Read Only
	140 to 20 mA	1302	Setup Page, Lockout
	150 to 5V	r/w	0 Full Access
	161 to 5V		1 Read Only
	170 to 10 V		2 Password
	180 to 50 mV		3 Hidden
	19 Vaisala 0 to 5V		3 Hidan
	20 Vaisala 0 to 10 V	1923	Show ${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$
	21 Vaisala 0 to 20 mA	r/w	0 No, Upper Display
	22 Rotronics 0 to 5V		1 Yes, Upper Display
	23500Ω DIN RTD		1 Yes, Upper Display
	24500Ω JIS RTD	313	Silence Alarm 1, Key Press Simulation
	25 1k Ω DIN RTD	w	Write any value
	26 1k Ω JIS RTD	332	Silence Alarm 2, Key Press Simulation
621	Sensor Type, Analog Input 3	w	Write any value
r/w	0 J	4	Software Revision, Diagnostics \sim NOTE:
	1 K	2	000 to 999 For more information
	2 T	3	Software Number, Diagnostics about parameters, see the
	3 E	r	0 to 99 about parameters, see the
	$\begin{array}{ll}4 & \mathrm{~N} \\ 5 & \mathrm{C}\end{array}$	1514	Test Outputs, Test Index.
	6 D		0 All Off
	7 PT2		1 Output 1A
	8 R		2 Output 1B
	9 S		3 Output 2A
	10 B		4 Output 2B
	11 100 ${ }^{\text {D DIN RTD }}$		5 Retransmit 1
	12100Ω JIS RTD		6 Retransmit 2
	134 to 20 mA		7 Alarm 1
	140 to 20 mA		8 Alarm 2
	150 to 5V		9 Digital Out 1)
	161 to 5V		10 Digital Out 2
	170 to 10 V		11 Digital Out 3
	180 to 50 mV		12 Digital Out 4
	23500Ω DIN RTD		13 Digital Out 5
	24500Ω JIS RTD		14 Digital Out 6
	$251 \mathrm{k} \Omega$ DIN RTD		15 Digital Out 7
	26 1k Ω JIS RTD		16 Digital Out 8
600	Sensor, Analog Input 1		17 All On
r/w	0 Thermocouple		18 Communications
	1 RTD	901	${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$, System
	2 Process	r/w	$0{ }^{\circ} \mathrm{F}$
	4 Off		$1{ }^{\circ} \mathrm{C}$

Sensor, Analog Input 2
0 Thermocouple
1 RTD
Process
Wet Bulb-Dry Bulb
Off

Sensor, Analog Input 3

0 Thermocouple
RTD
2 Process
4 Off

Profile Parameters

4004	Autostart Profile Date or Day
r/w	$0 \quad$ Date
	$1 \quad$ Day
4009	Autostart Time (hours)
r/w	0 to 99
4010	Autostart Time (minutes)
r/w	0 to 59
4011	Autostart Time (seconds)
r/w	0 to 59

r/w	Autostart, Date (day) 1 to 31
4005	Autostart, Date (month)
r/w	0 to 12
4007	Autostart, Date (year)
r/w	1998 to 2035
4008	Autostart, Day (of week)
r/w	0 Every Day
	1 Sunday
	2 Monday
	3 Tuesday
	4 Wednesday
	5 Thursday
	6 Friday
	7 Saturday
4046	Channel 1 PID Set, Ramp Rate or Ramp Time or Soak Steps
r/w	0 Channel 1 PID
	1 Channel 2 PID
4124	Channel 1 PID, Ramp Rate, Ramp Time or Soak Step, Current Profile Status
r	0 Channel 1 PID
	1 Channel 2 PID
4047	Channel 2 PID Set, Ramp Rate or Ramp Time or Soak Steps
r/w	0 Channel 1 PID
	1 Channel 2 PID
4125	Channel 2 PID Set, Ramp Rate, Ramp Time or Soak Step, Current Profile Status
,	0 Channel 1 PID
	1 Channel 2 PID
	Create Profile - see Edit Profile Action
	Delete Profile or Step - see Edit Profile Action
4111	Digital Output 1, Monitor Current Status (Profile)
r	0 Off
	1 On
4112	Digital Output 2, Monitor Current Status (Profile)
r	0 Off
	1 On
4113	Digital Output 3, Monitor Current Status (Profile)
r	0 Off
	1 On
4114	Digital Output 4, Monitor Current Status (Profile)
	0 Off
	1 On
4115	Digital Output 5, Monitor Current Status (Profile)
	0 Off
	1 On
4116	Digital Output 6, Monitor Current Status (Profile)
,	0 Off
	1 On
4117	Digital Output 7, Monitor Current Status (Profile)
,	0 Off
	1 On
4118r	Digital Output 8, Monitor Current Status (Profile)
	0 Off
	1 On
4002	Edit Profile Action
	1 Create
	2 Insert Step
	3 Delete Current Profile
	4 Delete Step
	5 Start Profile
	255 Delete All Profiles
4060 r/w	End Action, End Step
	0 Hold
	1 Control Off
	2 All Off
	3 Idle
4061	End Idle Setpoint Channel 1, End Step
	Set Point 1 Low Limit to Set Point 1 High Limit
4062r/w	End Idle Setpoint Channel 2, End Step
	Set Point 2 Low Limit to Set Point 2 High Limit
4129r	End Set Point Channel 1, Current Profile Status
	Range Low 1 to Range High 1
4130	End Set Point Channel 2, Current Profile Status
r	Range Low 2 to Range High 2

3700-09	Name, Profile 21 (10 characters)	4011	Ramp Time (seconds)
3710-19	Name, Profile 22 (10 characters)	r/w	0 to 59
3720-29	Name, Profile 23 (10 characters)	4043	Rate, Ramp Rate Step
3730-39	Name, Profile 24 (10 characters)	r/w	1 to 3000 units per minute
3740-49	Name, Profile 25 (10 characters)		ReName Profile - see Name, Profile x
3750-59	Name, Profile 26 (10 characters)	1209	Resume a Profile, Key Press Simulation
3760-69	Name, Profile 27 (10 characters)	W	1 Resume
3770-79	Name, Profile 28 (10 characters)	25	Save Changes to EE
3780-89	Name, Profile 29 (10 characters)	w	0
3790-99	Name, Profile 30 (10 characters)	4119	Hours Remaining, Ramp Time or Soak Step, Current Profile Status
3800-09	Name, Profile 31 (10 characters)	r	0 to 99 ,
3810-19	Name, Profile 32 (10 characters)	4120	Minutes Remaining, Ramp Time or Soak Step, Current Profile Status
3820-29	Name, Profile 33 (10 characters)	r	0 to 59 (
3830-39	Name, Profile 34 (10 characters)	4121	Seconds Remaining, Ramp Time or Soak Step, Current Profile Status
3840-49	Name, Profile 35 (10 characters)	r	0 to 59 a
3850-59	Name, Profile 36 (10 characters)	4122	Set Point Ch. 1, Ramp Rate, Ramp Time or Soak Step, Current Profile Status
3860-69	Name, Profile 37 (10 characters)	r	Range low to range high
3870-79	Name, Profile 38 (10 characters)	4123	Set Point Ch. 2, Ramp Rate, Ramp Time or Soak Step, Current Profile Status
3880-89	Name, Profile 39 (10 characters)	r	Range low to range high
3890-99	Name, Profile 40 (10 characters)	4009	Soak Step Time (hours)
	Profile Edit Action - see Edit Profile Action	r/w	0 to 99
4000	Profile Number	4010	Soak Step Time (minutes)
4100	Profile Number, Current Status	r/w	0059
4103	Profile Ramp Waiting, Current Status	4011	Soak Step Time (seconds)
1218	Profiles Remaining	r/w	0059
r	0-40	1217	Terminate a Profile, Key Press Simulation
4001	Profile Step Number	W	1 Terminate
4101	Profile Step Number, Current Status	4021	Wait For Analog 1, Ramp Rate or Ramp Time or Soak Steps
1219	Profile Steps Remaining	r/w	0 Don't Wait
r	0-256		1 Wait
$\begin{aligned} & 4003 \\ & \text { r/w } \end{aligned}$	Profile Step Type	4022	Wait For Analog 1, Value, Ramp Rate or Ramp Time or Soak Steps
	1 Ramp Time	r/w	Range Low to Range High
	2 Ramp Rate	4023	Wait For Analog 2, Ramp Rate or Ramp Time or Soak Steps
	3 Soak	r/w	0 Don't Wait
	4 Jump		
	5 End (read only)		
4102	Profile Step Type, Current Status	r/w	Wait For Analog 2, Value, Ramp Rate or Ramp Time or Soak Steps Range Low to Range High
	$\begin{array}{ll}1 & \text { Ramp Time } \\ 2 & \text { Ramp Rate }\end{array}$	4026	Wait For Analog 3 Value, Ramp Rate or Ramp Time or Soak Steps
	3 Soak	r/w	Range Low to Range High
	4 Jump	4025	Wait For Analog 3, Ramp Rate or Ramp Time or Soak Steps
	5 End	r/w	0 Don't Wait
4108	Profile Waiting for Analog Input 1, Current Status		1 Wait
4108	0 Don't Wait	4013	Wait For Event 1, Ramp Rate or Ramp Time or Soak Steps
	1 Wait	r/w	0 Don't Wait
4109	Profile Waiting for Analog Input 2, Current Status		1 Wait for Off
4109	0 Don't Wait		2 Wait for On
	1 Wait	4014	Wait For Event 2, Ramp Rate or Ramp Time or Soak Steps
4110	Profile Waiting for Analog Input 3, Current Status	r/w	0 Don't Wait
r	0 Don't Wait		1 Wait for Off
			2 Wait for On
4104r	Profile Waiting for Event 1, Current Status	4015	Wait For Event 3, Ramp Rate or Ramp Time or Soak Steps
	0 Don't Wait	r/w	0 ${ }^{1}$ Don't Wait
	1 Wait for Off		1 Wait for Off
	2 Wait for On		2 Wait for On
4105	Profile Waiting for Event 2, Current Status	4016	Wait For Event 4, Ramp Rate or Ramp Time or Soak Steps
r	0 Don't Wait	r/w	0 ${ }^{1}$ Don't Wait
	1 Wait for Off		1 Wait for Off
	2 Wait for On		2 Wait for On
4106	Profile Waiting for Event 3, Current Status	4012	Wait/Don't Wait, Ramp Rate or Ramp Time or Soak Steps
r	0 Don't Wait	r/w	${ }_{0} 0$ Don't Wait
	1 Wait for Off		1 Wait for
	2 Wait for On		
4107	Profile Waiting for Event 4, Current Status		
r/w	0 Don't Wait		
	1 Wait for Off		
	2 Wait for On		
4044	Ramp Set Point Channel 1, Ramp Rate or Ramp Time Step Range low to range high		
r/w			
4045	Ramp Set Point Channel 2, Ramp Time Step Range low to range high		
r/w			
4009	$\begin{aligned} & \text { Ramp Time (hours) } \\ & 0 \text { to } 99 \end{aligned}$		
r/w			
4010	Ramp Time (minutes) 0059		
r/w			

Parameters Sorted by Modbus Register

0	Model, Diagnostics	517
1	Serial Number, First Part, Diagnostics	520
2	Serial Number, Second Part, Diagnostics	521
3	Software Number, Diagnostics	522
4	Software Revision, Diagnostics	523
5	Mfg. Date, Diagnostics	524
8	Input 1 Type, Diagnostics	525
9	Input 2 Type, Diagnostics	527
10	Input 3 Type, Diagnostics	530
16	Output 1A Type, Diagnostics	531
17	Output 1B Type, Diagnostics	532
18	Output 2A Type, Diagnostics	533
19	Output 2B Type, Diagnostics	534
20	Retransmit 1 Type, Diagnostics	535
21	Retransmit 2 Type, Diagnostics	537
25	Save Changes to EE	540
100	Input 1 Value, Status	541
101	Input 1 Error, Status	542
102	Alarm 1, Status	543
103	\% Power Output 1A, Status	544
104	Input 2 Value, Status	545
105	Input 2 Error, Status	547
106	Alarm 2, Status	550
107	\% Power Output 1B, Status	551
108	Input 3 Value, Status	552
109	Input 3 Error, Status	553
111	\% Power Output 2A, Status	554
115	\% Power Output 2B, Status	555
200	Operation Mode, Status	556
201	Digital Input 1, Status	557
210	Input 1 Open Loop, Status	559
213	Digital Input 2, Status	560
222	Input 2 Open Loop, Status	561
225	Digital Input 3, Status	562
237	Digital Input 4, Status	563
300	Set Point 1, value	564
302	Alarm Low Set Point and Deviation, Alarm 1, value	565
303	Alarm High Set Point and Deviation, Alarm 1, value	570 571
304	Autotune Set Point, Channel 1, value	572
305	Autotune Channel 1	573
308	Idle Set Point, Channel 1, Power Out Action	574
311	Clear Error 1, Key Press Simulation	575
312	Clear Alarm 1, Key Press Simulation	577
313	Silence Alarm 1, Key Press Simulation	580
319	Set Point 2, value	581
321	Alarm Low Set Point and Deviation, Alarm 2, value	582 583
322	Alarm High Set Point and Deviation, Alarm	584
	2 , value	585
323	Autotune Set Point, Channel 2, value	587
324	Autotune Channel 2	590
327	Idle Set Point, Channel 2, Power Out Action	591
330	Clear Error 2, Key Press Simulation	592
331	Clear Alarm 2, Key Press Simulation	593
332	Silence Alarm 2, Key Press Simulation	594
343	Autotune Cascade	595
349	Clear Error 3, Key Press Simulation	597
500	Proportional Band 1A, PID Set 1, Channel 1	600
501	Integral 1A , PID Set 1, Channel 1	601
502	Reset 1A, PID Set 1, Channel 1	602
503	Derivative 1A, PID Set 1, Channel 1	603
504	Rate 1A, PID Set 1, Channel 1	604
505	Dead Band 1A, PID Set 1, Channel 1	605
506	Cycle Time value, Control Output 1A	606
507	Hysteresis 1A, PID Set 1, Channel 1	607
509	Cycle Time Type, Control Output 1A	608
510	Proportional Band 1A, PID Set 2, Channel 1	610
511	Integral 1A, PID Set 2, Channel 1	611
512	Reset 1A, PID Set 2, Channel 1	612
513	Derivative 1A, PID Set 2, Channel 1	613
514	Rate 1A, PID Set 2, Channel 1	614
515	Dead Band 1A, PID Set 2, Channel 1	615

517

Hysteresis 1A, PID Set 2, Channel 1 616
Proportional Band 1A, PID Set 3, Channel 1
Integral 1A , PID Set 3, Channel 1
Reset 1A, PID Set 3, Channel 1
Derivative 1A, PID Set 3, Channel 1
Rate 1A, PID Set 3, Channel 1
Dead Band 1A, PID Set 3, Channel 1
Hysteresis 1A, PID Set 3, Channel 1
Proportional Band 1A, PID Set 4, Channel 1
Integral 1A, PID Set 4, Channel 1
Reset 1A, PID Set 4, Channel 1
Derivative 1A, PID Set 4, Channel 1
Rate 1A, PID Set 4, Channel 1
Dead Band 1A, PID Set 4, Channel 1
Hysteresis 1A, PID Set 4, Channel 1
Proportional Band 1A, PID Set 5, Channel 1
Integral 1A , PID Set 5, Channel 1
Reset 1A, PID Set 5, Channel 1
Derivative 1A, PID Set 5, Channel 1
Rate 1A, PID Set 5, Channel 1
Dead Band 1A, PID Set 5, Channel 1
Hysteresis 1A, PID Set 5, Channel 1
Proportional Band 1B, PID Set 1, Channel 1
Integral 1B, PID Set 1, Channel 1
Reset 1B, PID Set 1, Channel 1
Derivative 1B, PID Set 1, Channel 1
Rate 1B, PID Set 1, Channel 1
Dead Band 1B, PID Set 1, Channel 1
Cycle Time value, Control Output 1B
Hysteresis 1B, PID Set 1, Channel 1
Cycle Time Type, Control Output 1B
Proportional Band 1B, PID Set 2, Channel 1
Integral 1B, PID Set 2, Channel 1
Reset 1B, PID Set 2, Channel 1
Derivative 1B, PID Set 2, Channel 1
Rate 1B, PID Set 2, Channel 1
Dead Band 1B, PID Set 2, Channel 1
Hysteresis 1B, PID Set 2, Channel 1
Proportional Band 1B, PID Set 3, Channel 1
Integral 1B, PID Set 3, Channel 1
Reset 1B, PID Set 3, Channel 1
Derivative 1B, PID Set 3, Channel 1
Rate 1B, PID Set 3, Channel 1
Dead Band 1B, PID Set 3, Channel 1
Hysteresis 1B, PID Set 3, Channel 1
Proportional Band 1B, PID Set 4, Channel 1
Integral 1B, PID Set 4, Channel 1
Reset 1B, PID Set 4, Channel 1
Derivative 1B, PID Set 4, Channel 1
Rate 1B, PID Set 4, Channel 1
Dead Band 1B, PID Set 4, Channel 1
Hysteresis 1B, PID Set 4, Channel 1
Proportional Band 1B, PID Set 5, Channel 1
Integral 1B, PID Set 5, Channel 1
Reset 1B, PID Set 5, Channel 1
Derivative 1B, PID Set 5, Channel 1
Rate 1B, PID Set 5, Channel 1
Dead Band 1B, PID Set 5, Channel 1
Hysteresis 1B, PID Set 5, Channel 1
Sensor, Analog Input 1
Sensor Type, Analog Input 1
Set Point Low Limit, Analog Input 1
Set Point High Limit, Analog Input 1
Filter Time, Analog Input 1
Calibration Offset, Analog Input 1
Decimal Point, Analog Input 1
Error Latching, Analog Input 1
Process Units, Analog Input 1
Sensor, Analog Input 2
Sensor Type, Analog Input 2
Set Point Low Limit, Analog Input 2
Set Point High Limit, Analog Input 2
Filter Time, Analog Input 2
Calibration Offset, Analog Input 2

618
618
620
621
622

623

624
625

Decimal Point, Analog Input 2
Error Latching, Analog Input 2
Process Units, Analog Input 2
Sensor, Analog Input 3
Sensor Type, Analog Input 3
Set Point Low Limit, Analog Input 3
Set Point High Limit, Analog Input 3
Filter Time, Analog Input 3
Calibration Offset, Analog Input 3
Decimal Point, Analog Input 3
Error Latching, Analog Input 3
Process Units, Analog Input 3
Scale Low, Analog Input 1
Scale High, Analog Input 1
Scale Low, Analog Input 2
Scale High, Analog Input 2
Scale Low, Analog Input 3
Scale High, Analog Input 3
Function, Control Output 1A
Process, Control Output 1A
Alarm Type, Alarm Output 1
Alarm Hysteresis, Alarm Output 1
Alarm Latching, Alarm Output 1
Alarm Silencing, Alarm Output 1
Alarm Sides, Alarm Output 1
Alarm Logic, Alarm Output 1
Alarm Messages, Alarm Output 1
Retransmit Source, Retransmit Output 1
Low Scale, Retransmit Output 1
High Scale, Retransmit Output 1
Scale Offset, Retransmit Output 1
High Power Limit, Control Output 1A
Low Power Limit, Control Output 1A
Alarm Source, Alarm Output 1
Function, Control Output 1B
Process, Control Output 1B
Alarm Type, Alarm Output 2
Alarm Hysteresis, Alarm Output 2
Alarm Latching, Alarm Output 2
Alarm Silencing, Alarm Output 2
Alarm Sides, Alarm Output 2
Alarm Logic, Alarm Output 2
Alarm Messages, Alarm Output 2
Retransmit Source, Retransmit Output 2
Low Scale, Retransmit Output 2
High Scale, Retransmit Output 2
Scale Offset, Retransmit Output 2
High Power Limit, Control Output 1B
Low Power Limit, Control Output 1B
Alarm Source, Alarm Output 2
Function, Control Output 2A
Process, Control Output 2A
High Power Limit, Control Output 2A
Low Power Limit, Control Output 2A
Function, Control Output 2B
Process, Control Output 2B
High Power Limit, Control Output 2B
Low Power Limit, Control Output 2B
Analog Range, Retransmit Output 1
Analog Range, Retransmit Output 2
PID Units, System
${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$, System
Input 1 Fail \% Power, System
Open Loop Channel 1
Input 2 Fail \% Power, System
Open Loop Channel 2
Function, Digital Input 1
Condition, Digital Input 1
Function, Digital Input 2
Condition, Digital Input 2
Function, Digital Input 3
Condition, Digital Input 3
Function, Digital Input 4
Condition, Digital Input 4

1075	Digital Input 1, Start Profile
1076	Digital Input 1, Start Step
1077	Digital Input 2, Start Profile
1078	Digital Input 2, Start Step
1079	Digital Input 3, Start Profile
1080	Digital Input 3, Start Step
1081	Digital Input 4, Start Profile
1082	Digital Input 4, Start Step
1205	Guaranteed Soak Band, Channel 1
1206	Power-Out Action
1209	Resume a Profile, Key Press Simulation
1210	Hold a Profile, Key Press Simulation
1212	Guaranteed Soak Band, Channel 2
1213	Power-Out Time
1217	Terminate a Profile, Key Press Simulation
1218	Profiles Remaining
1219	Profile Steps Remaining
1220	Guaranteed Soak Band 1 Source
1221	Guaranteed Soak Band 2 Source
1300	Set Point, Lockout
1302	Setup Page, Lockout
1303	Factory Page, Lockout
1306	Autotune PID, Lockout
1307	Edit PID, Lockout
1308	Alarm Set Point, Lockout
1309	Profiles, Lockout
1315	Clear Locks
1330-33	Set Password
1400-15	Custom Main Page Parameters (P1 to P16)
1500	CJC1 Temp, Diagnostics
1501	CJC1 AtoD, Diagnostics
1504	Input 1 AtoD, Diagnostics
1505	Input 2 AtoD, Diagnostics
1506	Input 3 AtoD, Diagnostics
1513	Display Test, Test
1514	Test Outputs, Test
1515	Line Frequency, Diagnostics
1531	CJC2 Temp, Diagnostics
1532	CJC2 AtoD, Diagnostics
1601	Restore Factory Calibration
1602	Full Defaults
1603	Input 1, Calibrate
1604	Process Output 1A, 4.000 mA , Calibrate
1605	Process Output 1A, 20.000 mA , Calibrate
1606	Process Output 1A, 1.000V, Calibrate
1607	Process Output 1A, 10.000V, Calibrate
1608	Input 2, Calibrate
1609	Process Output 1B, 4.000 mA , Calibrate
1610	Process Output 1B, 20.000 mA , Calibrate
1611	Process Output 1B, 1.000V, Calibrate
1612	Process Output 1B, 10.000 V , Calibrate
1613	Input 3, Calibrate
1614	Process Output 2A, 4.000 mA , Calibrate
1615	Process Output 2A, 20.000 mA , Calibrate
1616	Process Output 2A, 1.000V, Calibrate
1617	Process Output 2A, 10.000 V , Calibrate
1619	Process Output 2B, 4.000 mA , Calibrate
1620	Process Output 2B, 20.000 mA , Calibrate
1621	Process Output 2B, 1.000 V , Calibrate
1622	Process Output 2B, 10.000 V , Calibrate
1624	Retransmit Output 1, 4.000 mA , Calibrate
1625	Retransmit Output 1, 20.000 mA , Calibrate
1626	Retransmit Output 1, 1.000V, Calibrate
1627	Retransmit Output 1, 10.000 V , Calibrate
1629	Retransmit Output 2, 4.000 mA , Calibrate
1630	Retransmit Output 2, 20.000 mA , Calibrate
1631	Retransmit Output 2, 1.000V, Calibrate
1632	Retransmit Output 2, 10.000V, Calibrate
1902	Altitude, Analog Input 2
1915	Cascade, Analog Input 3
1916	Current Time, Hour
1917	Current Time, Minutes
1918	Current Time, Seconds
1919	Current Date, Month
1920	Current Date, Day
1921	Current Date, Year
1922	Cascade Inner Set Point
1923	Show ${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$

1925	Cascade Type
1926	Cascade, Range Low
1927	Cascade, Range High
2000	Digital Output 1, Condition
2001	Function, Digital Output 1
2010	Digital Output 2, Condition
2011	Function, Digital Output 2
2020	Digital Output 3, Condition
2021	Function, Digital Output 3
2030	Digital Output 4, Condition
2031	Function, Digital Output 4
2040	Digital Output 5, Condition
2041	Function, Digital Output 5
2046	Complementary Output, Digital Output 5
2050	Digital Output 6, Condition
2051	Function, Digital Output 6
2052	Boost Heat \% Power, Digital Output 6
2054	Boost Heat Delay On Time, Digital Output 6
2060	Digital Output 7, Condition
2061	Function, Digital Output 7
2062	Boost Cool \% Power, Digital Output 7
2064	Boost Cool Delay On Time, Digital Output 7
2070	Digital Output 8, Condition
2071	Function, Digital Output 8
2072	Compressor On \% Power, Digital Output 8
2073	Compressor Off \% Power, Digital Output 8
2074	Compressor On Delay, Digital Output 8
2075	Compressor Off Delay, Digital Output 8
2500	Proportional Band 2A, PID Set 6, Channel 2
2501	Integral 2A, PID Set 6, Channel 2
2502	Reset 2A, PID Set 6, Channel 2
2503	Derivative 2A, PID Set 6, Channel 2
2504	Rate 2A, PID Set 6, Channel 2
2505	Dead Band 2A, PID Set 6, Channel 2
2506	Cycle Time Value, Control Output 2A
2507	Hysteresis 2A, PID Set 6, Channel 2
2509	Cycle Time (type), Control Output 2A
2510	Proportional Band 2A, PID Set 7, Channel 2
2511	Integral 2A, PID Set 7, Channel 2
2512	Reset 2A, PID Set 7, Channel 2
2513	Derivative 2A, PID Set 7, Channel 2
2514	Rate 2A, PID Set 7, Channel 2
2515	Dead Band 2A, PID Set 7, Channel 2
2517	Hysteresis 2A, PID Set 7, Channel 2
2520	Proportional Band 2A, PID Set 8, Channel 2
2521	Integral 2A, PID Set 8, Channel 2
2522	Reset 2A, PID Set 8, Channel 2
2523	Derivative 2A, PID Set 8, Channel 2
2524	Rate 2A, PID Set 8, Channel 2
2525	Dead Band 2A, PID Set 8, Channel 2
2527	Hysteresis 2A, PID Set 8, Channel 2
2530	Proportional Band 2A, PID Set 9, Channel 2
2531	Integral 2A, PID Set 9, Channel 2
2532	Reset 2A, PID Set 9, Channel 2
2533	Derivative 2A, PID Set 9, Channel 2
2534	Rate 2A, PID Set 9, Channel 2
2535	Dead Band 2A, PID Set 9, Channel 2
2537	Hysteresis 2A, PID Set 9, Channel 2
2540	Proportional Band 2A, PID Set 10, Channel 2
2541	Integral 2A, PID Set 10, Channel 2
2542	Reset 2A, PID Set 10, Channel 2
2543	Derivative 2A, PID Set 10, Channel 2
2544	Rate 2A, PID Set 10, Channel 2
2545	Dead Band 2A, PID Set 10, Channel 2
2547	Hysteresis 2A, PID Set 10, Channel 2
2550	Proportional Band 2B, PID Set 6, Channel 2
2551	Integral 2B, PID Set 6, Channel 2
2552	Reset 2B, PID Set 6, Channel 2
2553	Derivative 2B, PID Set 6, Channel 2
2554	Rate 2B, PID Set 6, Channel 2
2555	Dead Band 2B, PID Set 6, Channel 2
2556	Cycle Time Value, Control Output 2B
2557	Hysteresis 2B, PID Set 6, Channel 2
2559	Cycle Time (type), Control Output 2B
2560	Proportional Band 2B, PID Set 7, Channel 2
2561	Integral 2B, PID Set 7, Channel 2
2562	Reset 2B, PID Set 7, Channel 2
2563	Derivative 2B, PID Set 7, Channel 2

2564	R
2565	Dead Band 2B, PID Set 7, Channel 2
2567	Hysteresis 2B, PID Set 7, Channel 2
2570	Proportional Band 2B, PID Set 8, Channel 2
2571	Integral 2B, PID Set 8, Channel 2
2572	Reset 2B, PID Set 8, Channel 2
2573	Derivative 2B, PID Set 8, Channel 2
2574	Rate 2B, PID Set 8, Channel 2
2575	Dead Band 2B, PID Set 8, Channel 2
2577	Hysteresis 2B, PID Set 8, Channel 2
2580	Proportional Band 2B, PID Set 9, Channel 2
2581	Integral 2B, PID Set 9, Channel 2
2582	Reset 2B, PID Set 9, Channel 2
2583	Derivative 2B, PID Set 9, Channel 2
2584	Rate 2B, PID Set 9, Channel 2
2585	Dead Band 2B, PID Set 9, Channel 2
2587	Hysteresis 2B, PID Set 9, Channel 2
2590	Proportional Band 2B, PID Set 10, Channel 2
2591	Integral 2B, PID Set 10, Channel 2
2592	Reset 2B, PID Set 10, Channel 2
2593	Derivative 2B, PID Set 10, Channel 2
2594	Rate 2B, PID Set 10, Channel 2
2595	Dead Band 2B, PID Set 10, Channel 2
2597	Hysteresis 2B, PID Set 10, Channel 2
2600	Proportional Band 1A, Cascade PID Set 1, Channel 1
2601	Integral 1A , Cascade PID Set 1, Channel 1 2602 Reset 1A, Cascade PID Set 1, Channel 1
2603	Derivative 1A, Cascade PID Set 1, Channel 1
2604	Rate 1A, Cascade PID Set 1, Channel 1
2605	Dead Band 1A, Cascade PID Set 1, Channel 1
2607	Hysteresis 1A, Cascade PID Set 1, Channel 1
2610	Proportional Band 1A, Cascade PID Set 2, Channel 1
2611	Integral 1A, Cascade PID Set 2, Channel 1
2612	Reset 1A, Cascade PID Set 2, Channel 1
2613	Derivative 1A, Cascade PID Set 2, Channel 1
2614	Rate 1A, Cascade PID Set 2, Channel 1
2615	Dead Band 1A, Cascade PID Set 2, Channel 1
2617	Hysteresis 1A, Cascade PID Set 2, Channel 1
2620	Proportional Band 1A, Cascade PID Set 3 , Channel 1
2621	Integral 1A, Cascade PID Set 3, Channel 1
2622	Reset 1A, Cascade PID Set 3, Channel 1
2623	Derivative 1A, Cascade PID Set 3, Channel 1
2624	Rate 1A, Cascade PID Set 3, Channel 1
2625	Dead Band 1A, Cascade PID Set 3, Channel 1
2627	Hysteresis 1A, Cascade PID Set 3, Channel 1
2630	Proportional Band 1A, Cascade PID Set 4, Channel 1
2631	Integral 1A, Cascade PID Set 4, Channel 1
2632	Reset 1A, Cascade PID Set 4, Channel 1
2633	Derivative 1A, Cascade PID Set 4, Channel 1
2634	Rate 1A, Cascade PID Set 4, Channel 1
2635	Dead Band 1A, Cascade PID Set 4, Channel 1
2637	Hysteresis 1A, Cascade PID Set 4, Channel 1
2640	Proportional Band 1A, Cascade PID Set 5, Channel 1
2641	Integral 1A, Cascade PID Set 5, Channel 1
2642	Reset 1A, Cascade PID Set 5, Channel 1
2643	Derivative 1A, Cascade PID Set 5, Channel 1
2644	Rate 1A, Cascade PID Set 5, Channel 1
2645	Dead Band 1A, Cascade PID Set 5, Channel 1
2647	Hysteresis 1A, Cascade PID Set 5, Channel 1
2650	Proportional Band 1B, Cascade PID Set 1 , Channel 1
2651	Integral 1B, Cascade PID Set 1, Channel 1
2652	Reset 1B, Cascade PID Set 1, Channel 1
2653	Derivative 1B, Cascade PID Set 1, Channel 1
2654	Rate 1B, Cascade PID Set 1, Channel 1
2655	Dead Band 1B, Cascade PID Set 1, Channel 1
2657	Hysteresis 1B, Cascade PID Set 1, Channel 1
2660	Proportional Band 1B, Cascade PID Set 2, Channel 1
2661	Integral 1B, Cascade PID Set 2, Channel 1
2662	Reset 1B, Cascade PID Set 2, Channel 1
2663	Derivative 1B, Cascade PID Set 2, Channel 1
2664	Rate 1B, Cascade PID Set 2, Channel 1

2665	Dead Band 1B, Cascade PID Set 2, Channel	3770-79	Name, Profile 28 (10 characters)	4049	Ramp Time or Soak Steps
	1	3780-89	Name, Profile 29 (10 characters)		Guaranteed Soak Channel 2, Ramp Rate or
2667	Hysteresis 1B, Cascade PID Set 2, Channel	3790-99	Name, Profile 30 (10 characters)		Ramp Time or Soak Steps
	1 Preme	3800-09	Name, Profile 31 (10 characters)	4050	Jump to Profile, Jump Step
2670	Proportional Band 1B, Cascade PID Set 3,	3810-19	Name, Profile 32 (10 characters)	4051	Jump to Step, Jump Step
	Channel 1	3820-29	Name, Profile 33 (10 characters)	4052	Jump Repeats, Jump Step
2671	Integral 1B, Cascade PID Set 3, Channel 1	3830-39	Name, Profile 34 (10 characters)	4060	End Action, End Step
2672	Reset 1B, Cascade PID Set 3, Channel 1	3840-49	Name, Profile 35 (10 characters)	4061	End Idle Setpoint Channel 1, End Step
2673	Derivative 1B, Cascade PID Set 3, Channel	3850-59	Name, Profile 36 (10 characters)	4062	End Idle Setpoint Channel 2, End Step
	1	3860-69	Name, Profile 37 (10 characters)	4100	Profile Number, Current Status
2674	Rate 1B, Cascade PID Set 3, Channel 1	3870-79	Name, Profile 38 (10 characters)	4101	Profile Step Number, Current Status
2675	Dead Band 1B, Cascade PID Set 3, Channel	3880-89	Name, Profile 39 (10 characters)	4102	Profile Step Type, Current Status
	1	3890-99	Name, Profile 40 (10 characters)	4103	Profile Ramp Waiting, Current Status
2677	Hysteresis 1B, Cascade PID Set 3, Channel	4000	Profile Number	4104	Profile Waiting for Event 1, Current Status
	1	4001	Profile Step Number	4105	Profile Waiting for Event 2, Current Status
2680	Proportional Band 1B, Cascade PID Set 4,	4002	Profile Edit Action	4106	Profile Waiting for Event 3, Current Status
	Channel 1	4003	Profile Step Type	4107	Profile Waiting for Event 4, Current Status
2681	Integral 1B, Cascade PID Set 4, Channel 1	4004	Autostart Profile Date or Day	4108	Profile Waiting for Analog Input 1, Current
2682	Reset 1B, Cascade PID Set 4, Channel 1	4005	Autostart, Date (month)		Status
2683	Derivative 1B, Cascade PID Set 4, Channel	4006	Autostart, Date (day)	4109	Profile Waiting for Analog Input 2, Current
	1	4007	Autostart, Date (year)		Status
2684	Rate 1B, Cascade PID Set 4, Channel 1	4008	Autostart, Day (of week)	4110	Profile Waiting for Analog Input 3, Current
2685	Dead Band 1B, Cascade PID Set 4, Channel	4009	Autostart Time (hours)		Status
	1	4010	Autostart Time (minutes)	4111	Digital Output 1, Current Status
2687	Hysteresis 1B, Cascade PID Set 4, Channel	4011	Autostart Time (seconds)	4112	Digital Output 2, Current Status
	1	4009	Ramp Time (hours)	4113	Digital Output 3, Current Status
2690	Proportional Band 1B, Cascade PID Set 5,	4010	Ramp Time (minutes)	4114	Digital Output 4, Current Status
	Channel 1	4011	Ramp Time (seconds)	4115	Digital Output 5, Current Status
2691	Integral 1B, Cascade PID Set 5, Channel 1	4009	Soak Step Time (hours)	4116	Digital Output 6, Current Status
2692	Reset 1B, Cascade PID Set 5, Channel 1	4010	Soak Step Time (minutes)	4117	Digital Output 7, Current Status
2693	Derivative 1B, Cascade PID Set 5, Channel	4011	Soak Step Time (seconds)	4118	Digital Output 8, Current Status
	1	4012	Wait/Don't Wait, Ramp Rate or Ramp Time	4119	Hours Remaining, Ramp Time or Soak
2694	Rate 1B, Cascade PID Set 5, Channel 1		or Soak Steps		Step, Current Profile Status
2695	Dead Band 1B, Cascade PID Set 5, Channel 1	4013	Wait For Event 1, Ramp Rate or Ramp Time or Soak Steps	4120	Minutes Remaining, Ramp Time or Soak Step, Current Profile Status
2697	Hysteresis 1B, Cascade PID Set 5, Channel 1	4014	Wait For Event 2, Ramp Rate or Ramp Time or Soak Steps	4121	Seconds Remaining, Ramp Time or Soak Step, Current Profile Status
3000-06	Name, Digital Input 1 (7 characters)	4015	Wait For Event 3, Ramp Rate or Ramp Time	4122	Set Point Channel 1, Ramp Rate, Ramp Time
3010-16	Name, Digital Input 2 (7 characters)		or Soak Steps		or Soak Step, Current Profile Status
3020-26	Name, Digital Input 3 (7 characters)	4016	Wait For Event 4, Ramp Rate or Ramp Time	4123	Set Point Channel 2, Ramp Rate, Ramp Time
3030-36	Name, Digital Input 4 (7 characters)		or Soak Steps		or Soak Step, Current Profile Status
3100-09	Name, Digital Output 1 (10 characters)	4021	Wait For Analog 1, Ramp Rate or Ramp	4124	Channel 1 PID, Ramp Rate, Ramp Time or
3110-19	Name, Digital Output 2 (10 characters)		Time or Soak Steps		Soak Step, Current Profile Status
3120-29	Name, Digital Output 3 (10 characters)	4022	Wait For Analog 1, Value, Ramp Rate or	4125	Channel 2 PID Set, Ramp Rate, Ramp Time or
3130-39	Name, Digital Output 4 (10 characters)		Ramp Time or Soak Steps		Soak Step, Current Profile Status
3140-49	Name, Digital Output 5 (10 characters)	4023	Wait For Analog 2, Ramp Rate or Ramp	4126	Jump Count, Current Profile Status
3150-59	Name, Digital Output 6 (10 characters)		Time or Soak Steps	4127	Jump Profile, Current Profile Status
3160-69	Name, Digital Output 7 (10 characters)	4024	Wait For Analog 2, Value, Ramp Rate or	4128	Jump Step, Current Profile Status
3170-79	Name, Digital Output 8 (10 characters)		Ramp Time or Soak Steps	4129	End Set Point Channel 1, Current Profile
3200-09	Name, Alarm 1 (10 characters)	4025	Wait For Analog 3, Ramp Rate or Ramp		Status
3210-19	Name, Alarm 2 (10 characters)		Time or Soak Steps	4130	End Set Point Channel 2, Current Profile
3500-09	Name, Profile 1 (10 characters)	4026	Wait For Analog 3 Value, Ramp Rate or		Status
3510-19	Name, Profile 2 (10 characters)		Ramp Time or Soak Steps	4501-18	Custom Message 1
3520-29	Name, Profile 3 (10 characters)	4030	Event Output 1, Ramp Rate or Ramp Time	4521-38	Custom Message 2
3530-39	Name, Profile 4 (10 characters)		or Soak Steps	4541-58	Custom Message 3
3540-49	Name, Profile 5 (10 characters)	4031	Event Output 2, Ramp Rate or Ramp Time	4561-78	Custom Message 4
3550-59	Name, Profile 6 (10 characters)		or Soak Steps	5500	Process Display
3560-69	Name, Profile 7 (10 characters)	4032	Event Output 3, Ramp Rate or Ramp Time	5501	Process Display Input 1, Time
3570-79	Name, Profile 8 (10 characters)		or Soak Steps	5502	Process Display Input 2, Time
3580-89	Name, Profile 9 (10 characters)	4033	Event Output 4, Ramp Rate or Ramp Time	5503	Process Display Input 3, Time
3590-99	Name, Profile 10 (10 characters)		or Soak Steps		
3600-09	Name, Profile 11 (10 characters)	4034	Event Output 5, Ramp Rate or Ramp Time		
3610-19	Name, Profile 12 (10 characters)		or Soak Steps		
3620-29	Name, Profile 13 (10 characters)	4035	Event Output 6, Ramp Rate or Ramp Time		
3630-39	Name, Profile 14 (10 characters)		or Soak Steps		
3640-49	Name, Profile 15 (10 characters)	4036	Event Output 7, Ramp Rate or Ramp Time		
3650-59	Name, Profile 16 (10 characters)		or Soak Steps		VOTE:
3660-69	Name, Profile 17 (10 characters)	4037	Event Output 8, Ramp Rate or Ramp Time		more information about
3670-79	Name, Profile 18 (10 characters)		or Soak Steps		more information
3680-89	Name, Profile 19 (10 characters)	4043	Rate, Ramp Rate Step		arameters, see the Index.
3690-99	Name, Profile 20 (10 characters)	4044	Ramp Setpoint Channel 1, Ramp Rate or		
3700-09	Name, Profile 21 (10 characters)		Ramp Time Step		
3710-19	Name, Profile 22 (10 characters)	4045	Ramp Setpoint Channel 2, Ramp Time Step		
3720-29	Name, Profile 23 (10 characters)	4046	Channel 1 PID Set, Ramp Rate or Ramp		
3730-39	Name, Profile 24 (10 characters)		Time or Soak Steps		
3740-49	Name, Profile 25 (10 characters)	4047	Channel 2 PID Set, Ramp Rate or Ramp		
3750-59	Name, Profile 26 (10 characters)		Time or Soak Steps		
3760-69	Name, Profile 27 (10 characters)	4048	Guaranteed Soak Channel 1, Ramp Rate or		

Communications Page Parameter Table

Parameter	Description	Range (Modbus Value)
	Communications	
Main $>$ Setup > Communications		

Baud Rate
 19200

Set the transmission speed in bits/seconds.

9600

Address
Set the controller's address between 1 and 247.

F4 Modbus Applications: Profile Programming Procedures

F4 Modbus Applications: Profile Overview

A maximum of 40 files may be created, with a total of 256 steps. Each time a new file is created, the file is placed after the previously created file. As files are deleted, newly created files are placed into these locations. Modbus Register 4000 returns the file number of the newly created file.
*Profiles without custom-written names are referred to
by their numbers (Profile 1, Profile 2, etc.),

F4 Modbus Applications: Creating a Profile

*Profiles without custom-written names are referred to by
their numbers (Profile 1, Profile 2, etc.),

F4 Modbus Applications: Autostart Step

Autostart pauses a profile until the specified date or day, and time (of a 24 -hourclock).

F4 Modbus Applications: Ramp Time, Ramp Rate, Soak Steps (page 1 of 3)

Digital inputs must be configured as Events before profiling: "Digital Input 1 to 4 Function = Wait for Event" and "Digital Input 1 to 4 Condition = Low or High." Modbus Registers 1060 through 1067. See Setup Page Map.

F4 Modbus Applications: Ramp Time, Ramp Rate, Soak Steps (page 2 of 3)

Analog inputs and digital outputs must be configured before programming a profile. See Setup Page Map.

F4 Modbus Applications: Ramp Time, Ramp Rate, Soak Steps (page 3 of 3)

F4 Modbus Applications: Jump Step

Jump initiates another step or profile. File must exist at location specified.

F4 Modbus Applications:
End Step

F4 Modbus Applications: Editing, Deleting, Starting a Profile

F4 Modbus Applications: Naming a Profile

Profiles without custom-written names are referred to by their numbers (Profile 1, Profile 2, etc.). Follow this procedure to customize the profile name, using ASCII-equivalent decimal codes (in the column labeled "Dec" in the chart below).

Renaming a Profile - F4 via Modbus Communication

F4 Modbus Applications: Monitor Current Step

Chapter Eight: Security and Locks

Overview

The Series F4 allows users to set separate security levels for the Static Set Point prompt on the Main Page, for all menus on the Operations Page, as well as for the Profiles Page, Setup Page and Factory Page. Four levels of security are available:

- Full Access (operators can enter and change settings);
- Read Only (operators can read but not change settings);
- Password (operators can enter and change settings after entering a password); and
- Hidden (operators cannot see the menu or page - it is not displayed). Set Point settings cannot be Hidden.
Full Access is the default for all menus. Unless you change the level of access, operators will be able to read and change every setting in every menu in the Series F4 software.

Set Lock Levels

To set levels of security, go to "Set Lockout," on the Factory Page. Press the Right Key \boldsymbol{D}. This menu lists the menus for which access can be limited:

- Set Point on Main Page
- Operations Page Autotune PID
- Operations Page Edit PID
- Operations Page Alarm Set Point
- Profiles Page
- Setup Page
- Factory Page

After choosing the item to lock out, press \boldsymbol{D} and choose the level of access: Full, Read Only, Password or Hidden. If you choose Password, you must set the password - see below.

$\boldsymbol{\sim}$ NOTE:

Full Access is the default for all menus. Unless you change the level of access, operators will be able to read and change every setting in every menu in the Series F4 software.
Main>Factory
0
>Set Lockout
Diagnostic
Test
...Factory>Set Lock
...Factory>Set Lock
Set Point
Set Point
>Oper. Autotune PID
>Oper. Autotune PID
Oper. Edit PID
Oper. Edit PID
...Lock>Autotune PID
...Lock>Autotune PID
Full Access
Full Access
Read Only
Read Only
>Password
>Password

$\boldsymbol{\nu}$ NOTE:

For more information about how parameter settings affect the controller's operation, see the Features Chapter.

Enter a Password

If you try to set password security before any password has been established, a pop-up message will give you the opportunity to enter one. Use the -0 00 keys to enter a four-character password, which can consist of letters, numbers or both. After entering and confirming the password, re-enter the chosen menu or page and select Password Security. Record your password and keep it secure.

Use a Password

To enter a password-protected area, users must enter the password. If an incorrect password is entered, a pop-up message will tell you it is invalid and you may try again. When the password is correct, choose again to enter the menu or page of your choice.

Change a Password

The Change Password parameter is near the end of the list under Set Lockout on the Factory Page. To change a password, you must first enter the old password for confirmation.

```
    Must have password
before choosing the
password lock!
Must reset lock
after setting the
password
```

■■■Press any key!■■■
Enter New Password:

- - - -

Adjusts Char
4- Save Changes
Confirm Password:
- $\boldsymbol{\nabla}$ Adjusts Char
4 Save Changes

```
Invalid, Re-Enter:
```

© $\boldsymbol{\nabla}$ Adjusts Char - Save Changes

Set Lockout Menu Map

```
Set Point
Oper. Autotune PID
Oper Edit PID
Oper. Alarm SP
Profile
Setup
Factory
Change Password
Clear Locks
```

Set Lock Parameter	out Menu Par Description	eter Table Range (Modbus Value)	Default	$\begin{gathered} \text { Modbus } \\ \text { Register } \\ \text { read/write } \\ {[I / \mathbf{O}, \text { Set, } \mathbf{C h}]} \end{gathered}$	Conditions for Parameters to Appear
Set Lockout					
Main > Factory > Set Lock					
Set Point	et the set point cess level.	Full Access (0) Read Only (1)	Full Access	$1300 \mathrm{r} / \mathrm{w}$	Active: Always.
Operation	s, Autotune PID imit access to this enu.	Full Access (0) Read Only (1) Password (2) Hidden (3)	Full Access	1306 r/w	Active: Always.
Operation	s, Edit PID imit access to this enu.	Full Access (0) Read Only (1) Password (2) Hidden (3)	Full Access	$1307 \mathrm{r} / \mathrm{w}$	Active: Always.
Operation	s, Alarm Set Point imit access to this enu.	Full Access (0) Read Only (1) Password (2) Hidden (3)	Full Access	1308 r/w	Active: Always.
Profile Pa	mit access to this age.	Full Access (0) Read Only (1) Password (2) Hidden (3)	Full Access	$1309 \mathrm{r} / \mathrm{w}$	Active: Always.
Setup Pag	imit access to this ge.	Full Access (0) Read Only (1) Password (2) Hidden (3)	Full Access	$1302 \mathrm{r} / \mathrm{w}$	Active: Always.
Factory	imit access to this age.	Full Access (0) Read Only (1) Password (2)	Full Access	$1303 \mathrm{r} / \mathrm{w}$	Active: Always.
Set/Change	e Password eset or change assword. Choose es to change the assword.	Yes (0) No (1)		1314 //w	Active: Always.
Clear Lock	S nlock set point nd all pages and enus.	Yes (0)		1315 w	

Notes

9

Chapter Nine: Calibration

Thermocouple Input Procedure9.2RTD Input Procedure 9.2
Voltage Process Input Procedure 9.3
Current Process Input Procedure 9.3
Process Output Procedure 9.4
Retransmit Output Procedure 9.5
Calibration Menu Map 9.6
Factory Page Parameter Table 9.7

Overview

The Calibration Menu on the Factory Page allows calibration of inputs and outputs. Calibration procedures should be done only by qualified technical personnel with access to the equipment listed in each section.
Before beginning calibration procedures, warm up the controller for at least 20 minutes.

Restore Factory Values

Each controller is calibrated before leaving the factory. If at any time you want to restore the factory calibration values, use the last parameters in the menu: Restore In $x(1$ to 3$)$ Cal. Press D. No special equipment is necessary.

$\boldsymbol{\sim}$ NOTE:

To see how all the pages, menus and parameters are grouped, refer to the inside back cover of this manual.

$\boldsymbol{\sim}$ NOTE:

For more information about how parameter settings affect the controller's operation, see the Features Chapter.

Calibrating the Series F4

Thermocouple Input Procedure

Equipment

- Type J reference compensator with reference junction at $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$, or type J thermocouple calibrator to $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$.
- Precision millivolt source, 0 to 50 mV minimum range, 0.002 mV resolution.

Input x (1 to 3) Setup and Calibration

1. Connect the correct power supply to terminals 1, 2 and 3 (see the Wiring Chapter and the Appendix).
2. Connect the millivolt source to Input 1 terminals $62(-)$ and $61(+)$, Input 2 terminals $58(-)$ and $57(+)$, or Input 3 terminals $56(-)$ and 55 $(+)$, with copper wire.
3. Enter 50.000 mV from the millivolt source. Allow at least 10 seconds to stabilize. Press the Right Key \mathbf{D} once at the Calibrate Input x (1 to 3) prompt (Factory Page). At the 50.00 mV prompt press © once and to store 50.00 mV press the Up Key 0 once.
4. Enter 0.000 mV from the millivolt source. Allow at least 10 seconds to stabilize. At the 0.00 mV prompt press \mathcal{D} once and to store 0.00 mV press 0 once.
5. Disconnect the millivolt source and connect the reference compensator or thermocouple calibrator to Input 1 terminals $62(-)$ and $61(+)$ or Input 2 or 3 terminals $58(-)$ and $57(+)$. W ith type J thermocouple wire, if using a compensator, turn it on and short the input wires. When using a type J calibrator, set it to simulate $32^{\circ} \mathrm{F}$ $\left(0^{\circ} \mathrm{C}\right)$. Allow 10 seconds for the controller to stabilize. Press \boldsymbol{D} once at the Calibrate Input x (1 or 2) prompt (Factory Page). At the $32^{\circ} \mathrm{F}$ Type J prompt press \boldsymbol{D} once and to store type J thermocouple calibration press 0 once.
6. Rewire for operation and verify calibration.

\checkmark NOTE:

You need the equipment listed and technical skills. Controllers come calibrated from the factory. Recalibrate only for other agency requirements or if temperatures aren't accurate as verified by another calibrated instrument.

RTD Input Procedure

Equipment

- $1 \mathrm{k} \Omega$ decade box with 0.01Ω resolution.

Input x (1 to 3) Setup and Calibration

1. Connect the correct power supply to terminals 1,2 and 3 (see the Wiring Chapter and the Appendix).
2. Short Input 1 terminals 60, 61 and 62 ; Input 2 terminals 54, 57 and 58 ; or Input 3 terminals 52,55 and 56 together with less than 0.1Ω.
Press the Right Key \boldsymbol{D} once at the Calibrate Input $\mathrm{x}(1$ to 3) prompt. At the Ground prompt press \boldsymbol{D} once and to store ground input press the Up Key 0 once.
3. Short Input 1 terminals 60 and 61 ; Input 2 terminals 54 and 57 ; or Input 3 terminals 52 and 55 together with less than 0.5Ω. Press D once at the Calibrate Input x (1 to 3) prompt. At the Lead prompt press \boldsymbol{D} once and to store lead resistance press 0 once.
4. Connect the decade box to Input 1 terminals 60 (S2), 61 (S1) and 62 (S3); Input 2 terminals 54 (S2), 57 (S1) and 58 (S3); or Input 3 terminals 52 (S2), 55 (S1) and 56 (S3), with 20- to 24gauge wire.
5. For 100Ω RTD, enter 15.00Ω. For 500Ω or $1 \mathrm{k} \Omega$ RTD, enter 240.00Ω. Allow at least 10 seconds to stabilize. Press \boldsymbol{D} once at the Calibrate Input x (1 to 3) prompt (Factory Page). At the 15.00Ω or $240.00 \Omega^{*}$ prompt press \boldsymbol{D} once and to store the 15.00Ω or 240.00Ω input press $\mathbf{0}$ once.
6. For 100Ω RTD, enter 380.00Ω. For 500Ω or $1 \mathrm{k} \Omega$ RTD, enter 6080.00Ω. Allow at least 10 seconds to stabilize. Press 0 once at the Calibrate Input x (1 to 3) prompt. At the 380.0Ω or $6080.00 \Omega^{*}$ prompt press 0 once and to store the 380.00Ω or 6080.00Ω input press 0 once.
7. Rewire for operation and verify calibration.
*The tenth character of your model number determines what prompts appear and what input resistance values to use for the RTD calibration.
F4_ _-_ _ _-_(1 to 4)RG: 15.00 and 380.00Ω
F4_ _-_ _ _ _-(5 to 8)RG: 240.00 and 6080.00Ω

Voltage Process Input Procedure

Equipment

- Precision voltage source, 0 to 10 V minimum range, with 0.001 V resolution.

Input x (1 to 3) Setup and Calibration

1. Connect the correct power supply to terminals 1, 2 and 3 (see the Wiring Chapter and the Appendix).
Input 1
2. Connect the voltage source to terminals 59 (+) and $62(-)$ of the controller.
3. Enter 0.000 V from the voltage source to the controller. Allow at least 10 seconds to stabilize. Press the Right Key © once at the Calibrate Input 1 prompt. At the 0.000 V prompt press \boldsymbol{O} once and to store the 0.000 V input press the Up Key 0 once.
4. Enter 10.000 V from the voltage source to the controller. Allow at least 10 seconds to stabilize. Press D once at the Calibrate Input 1 prompt. At the 10.000 V prompt press \boldsymbol{O} once and to store the 10.000 V input press $\mathbf{0}$ once.

Input 2

5. Connect the voltage source to terminals 53 (+) and $58(-)$ of the controller.
6. Enter 0.000 V from the voltage source to the controller. Allow at least 10 seconds to stabilize. Press \boldsymbol{D} once at the Calibrate Input 2 prompt. At the 0.000 V prompt press \boldsymbol{D} once and to store the 0.000 V input press 0 once.
7. Enter 10.000 V from the voltage source to the controller. Allow at least 10 seconds to stabilize. Press $\left(\begin{array}{l}\text { once at the Calibrate Input } 2 \text { prompt }\end{array}\right.$ (Factory Page). At the 10.000 V prompt press \boldsymbol{D} once and to store the 10.000 V input press once.

Input 3

8. Connect the voltage source to terminals 51 (+) and $56(-)$ of the controller.
9. Enter 0.000 V from the voltage source to the controller. Allow at least 10 seconds to stabilize. Press D once at the Calibrate Input 3 prompt. At the 0.000 V prompt press 0 once and to store the 0.000 V input press 0 once.
10. Enter 10.000 V from the voltage source to the controller. Allow at least 10 seconds to stabilize.

Press \boldsymbol{D} once at the Calibrate Input 3 prompt (Factory Page). At the 10.000 V prompt press \boldsymbol{D} once and to store the 10.000 V input press once.
11. Rewire for operation and verify calibration.

Current Process Input Procedure

Equipment

- Precision current source, 0 to 20 mA range, with 0.01 mA resolution.

Input x (1 to 3) Setup and Calibration

1. Connect the correct power supply to terminals 1,2 and 3 (see the Wiring Chapter and the Appendix).

Input 1

2. Connect the current source to terminals 60 (+) and $62(-)$.
3. Enter 4.000 mA from the current source to the controller. Allow at least 10 seconds to stabilize. Press the Right Key \boldsymbol{D} once at the Calibrate Input 1 prompt. At the 4.000 mA prompt press D once and to store 4.000 mA press the Up Key 0 once.
4. Enter 20.000 mA from the current source to the controller. Allow at least 10 seconds to stabilize. Press \mathcal{D} once at the Calibrate Input 1 prompt. At the 20.000 mA prompt press \boldsymbol{D} once and to store 20.000 mA press $\mathbf{0}$ once.

Input 2

5. Connect the current source to terminals 54 (+) and $58(-)$.
6. Enter 4.00 mA from the current source to the controller. Allow at least 10 seconds to stabilize. Press \boldsymbol{D} once at the Calibrate Input 2 prompt. At the 4.000 mA prompt press \boldsymbol{D} once and to store 4.000 mA press 0 once.
7. Enter 20.00 mA from the current source to the controller. Allow at least 10 seconds to stabilize. Press \boldsymbol{D} once at the Calibrate Input 2 prompt. At the 20.000 mA prompt press \boldsymbol{D} once and to store 20.000 mA press $\mathbf{0}$ once.

Input 3

8. Connect the voltage source to terminals 52 (+) and $56(-)$ of the controller.
9. Enter 4.000 mA from the current source to the controller. Allow at least 10 seconds to stabilize.

Press D once at the Calibrate Input 3 prompt. At the 4.000 mA prompt press \boldsymbol{D} once and to store the 4.000 mA input press \mathbf{D} once.
10. Enter 20.000 mA from the current source to the controller. Allow at least 10 seconds to stabilize. Press \mathcal{D} once at the Calibrate Input 3 prompt (Factory Page). At the 20.000 mA prompt press
(D) once and to store the 20.000 mA input press © once.
11. Rewire for operation and verify calibration.

Process Output Procedure

Equipment

- Precision volt/ammeter with 3.5-digit resolution.

Output 1A Setup and Calibration

1. Connect the correct power supply to terminals 1, 2 and 3 (see the Wiring Chapter and the Appendix).

Milliamperes

2. Connect the volt/ammeter to terminals 42 (+) and 43 (-).
3. Press the Right Key \boldsymbol{D} at the Calibrate Output 1 A prompt. At the 4.000 mA prompt press \boldsymbol{D} once. Use the Up Key $\boldsymbol{\theta}$ or the Down Key $\boldsymbol{\square}$ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 4.000 mA . Press D to store the value.
4. Press the Right Key \boldsymbol{D} at the Calibrate Output 1A prompt. At the 20.000 mA prompt press ($\boldsymbol{\theta}$ once. Use the Up Key $\boldsymbol{\Delta}$ or the Down Key ∇ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 20.000 mA . Press \boldsymbol{D} to store the value.

Volts

5. Connect the volt/ammeter to terminals 44 (+) and 43 (-).
6. Press the Right Key \boldsymbol{D} at the Calibrate Output 1 A prompt. At the 1.000 V prompt press \boldsymbol{D} once. Use the Up Key $\boldsymbol{\bullet}$ or the Down Key $\boldsymbol{\square}$ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 1.000 V . Press \boldsymbol{D} to store the value.
7. Press the Right Key \boldsymbol{D} at the Calibrate Output 1A prompt. At the 10.000 V prompt press \boldsymbol{D} once. Use the Up Key $\boldsymbol{\triangle}$ or the Down Key $\boldsymbol{\square}$ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 10.000 V . Press \boldsymbol{D} to store the value.
8. Rewire for operation and verify calibration.

Output 1B Setup and Calibration

1. Connect the correct power supply to terminals 1,2 and 3 (see the Wiring Chapter and the Appendix).

Milliamperes

2. Connect the volt/ammeter to terminals 39 (+) and 40 (-).
3. Press the Right Key \boldsymbol{D} at the Calibrate Output 1B prompt. At the 4.000 mA prompt press \boldsymbol{Q} once. Use the Up Key $\boldsymbol{\triangle}$ or the Down Key $\boldsymbol{\square}$ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 4.000 mA . Press \boldsymbol{D} to store the value.
4. Press the Right Key \boldsymbol{D} at the Calibrate Output 1B prompt. At the 20.000 mA prompt press () once. Use the Up Key $\boldsymbol{0}$ or the Down Key \checkmark to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 20.000 mA . Press \boldsymbol{D} to store the value.

Volts

5. Connect the volt/ammeter to terminals 41 (+) and 40 (-).
6. Press the Right Key \oslash at the Calibrate Output 1B prompt. At the 1.000 V prompt press \boldsymbol{D} once. Use the Up Key $\boldsymbol{0}$ or the Down Key $\boldsymbol{\nabla}$ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 1.000 V . Press \boldsymbol{D} to store the value.
7. Press the Right Key \boldsymbol{D} at the Calibrate Output 1B prompt. At the 10.000 V prompt press 0 once. Use the Up Key $\boldsymbol{0}$ or the Down Key $\boldsymbol{\nabla}$ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 10.000 V . Press \boldsymbol{D} to store the value.
8. Rewire for operation and verify calibration.

Output 2A Setup and Calibration

1. Connect the correct power supply to terminals 1,2 and 3 (see the Wiring Chapter and the Appendix).

Milliamperes

2. Connect the volt/ammeter to terminals 36 (+) and 37 (-).
3. Press the Right Key \boldsymbol{D} at the Calibrate Output 2 A prompt. At the 4.000 mA prompt press \boldsymbol{D} once. Use the Up Key $\boldsymbol{0}$ or the Down Key $\boldsymbol{\nabla}$ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 4.000 mA . Press \boldsymbol{D} to store the value.
4. Press the Right Key \oslash at the Calibrate Output 2A prompt. At the 20.000 mA prompt press (D) once. Use the Up Key 0 or the Down Key \checkmark to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 20.000 mA . Press D to store the value.

Volts

5. Connect the volt/ammeter to terminals 38 (+) and 37 (-).
6. Press the Right Key D at the Calibrate Output 2 A prompt. At the 1.000 V prompt press \boldsymbol{D} once. Use the Up Key $\boldsymbol{0}$ or the Down Key \boldsymbol{D} to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 1.000 V . Press \boldsymbol{D} to store the value.
7. Press the Right Key \boldsymbol{D} at the Calibrate Output 2 A prompt. At the 10.000 V prompt press $\boldsymbol{\theta}$ once. Use the Up Key $\boldsymbol{\triangle}$ or the Down Key $\boldsymbol{\square}$ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 10.000 V. Press \boldsymbol{D} to store the value.
8. Rewire for operation and verify calibration.

Output 2B Setup and Calibration

1. Connect the correct power supply to terminals 1, 2 and 3 (see the Wiring Chapter and the Appendix).

Milliamperes

2. Connect the volt/ammeter to terminals 33 (+) and 34 (-).
3. Press the Right Key at the Calibrate Out-
put 2 B prompt. At the 4.000 mA prompt press \boldsymbol{D} once. Use the Up Key $\boldsymbol{\Delta}$ or the Down Key $\boldsymbol{\square}$ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 4.000 mA . Press D to store the value.
4. Press the Right Key \boldsymbol{D} at the Calibrate Output 2 B prompt. At the 20.000 mA prompt press () once. Use the Up Key \boldsymbol{O} or the Down Key ($)$ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 20.000 mA . Press \boldsymbol{D} to store the value.

Volts

5. Connect the volt/ammeter to terminals 35 (+) and 34 (-).
6. Press the Right Key \boldsymbol{D} at the Calibrate Output 2B prompt. At the 1.000 V prompt press \boldsymbol{D} once. Use the Up Key $\boldsymbol{0}$ or the Down Key $\boldsymbol{\square}$ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 1.000 V . Press D to store the value.
7. Press the Right Key \boldsymbol{D} at the Calibrate Output 2 B prompt. At the 10.000 V prompt press \boldsymbol{D} once. Use the Up Key $\boldsymbol{\triangle}$ or the Down Key $\boldsymbol{\square}$ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 10.000 V . Press \boldsymbol{D} to store the value.
8. Rewire for operation and verify calibration.

Retransmit Output Procedure

Equipment

- Precision volt/ammeter with 3.5-digit resolution.

Retransmit 1 Setup and Calibration

1. Connect the correct power supply to terminals 1, 2 and 3 (see the Wiring Chapter and the Appendix).

Milliamperes

2. Connect the volt/ammeter to terminals 50 (+) and 49 (-).
3. Press the Right Key \boldsymbol{D} at the Calibrate Rexmit 1 prompt. At the 4.000 mA prompt press © once. Use the Up Key $\boldsymbol{0}$ or the Down Key
(to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 4.000 mA . Press \boldsymbol{D} to store the value.
4. Press the Right Key at the Calibrate Rexmit 1 prompt. At the 20.000 mA prompt press \boldsymbol{D} once. Use the Up Key \boldsymbol{O} or the Down Key \boldsymbol{D} to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 20.000 mA . Press \boldsymbol{D} to store the value.

Volts

5. Connect the volt/ammeter to terminals 48 (+) and 49 (-).
6. Press the Right Key D at the Calibrate Rexmit 1 prompt. At the 1.000 V prompt press © once. Use the Up Key $\boldsymbol{0}$ or the Down Key \checkmark to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 1.000 V . Press D to store the value.
7. Press the Right Key at the Calibrate Rexmit 1 prompt. At the 10.000 V prompt press () once. Use the Up Key $\boldsymbol{0}$ or the Down Key ∇ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 10.000 V. Press D to store the value.
8. Rewire for operation and verify calibration.

Retransmit 2 Setup and Calibration

1. Connect the correct power supply to terminals

1, 2 and 3 (see the Wiring Chapter and the Appendix).

Milliamperes

2. Connect the volt/ammeter to terminals 47 (+) and 46 (-).
3. Press the Right Key \mathcal{D} at the Calibrate Rexmit 2 prompt. At the 4.000 mA prompt press (D) once. Use the Up Key © or the Down Key $($ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 4.000 mA . Press D to store the value.
4. Press the Right Key \boldsymbol{D} at the Calibrate Rexmit 2 prompt. At the 20.000 mA prompt press once. Use the Up Key © or the Down Key \triangle to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 20.000 mA . Press \boldsymbol{D} to store the value.

Volts

5. Connect the volt/ammeter to terminals 45 (+) and 46 (-).
6. Press the Right Key at the Calibrate Rexmit 2 prompt. At the 1.000 V prompt press (D) once. Use the Up Key \boldsymbol{O} or the Down Key ($)$ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 1.000 V . Press D to store the value.
7. Press the Right Key at the Calibrate Rexmit 2 prompt. At the 10.000 V prompt press () once. Use the Up Key \boldsymbol{O} or the Down Key

Calibration Menu Map

```
Calibrate Input 1
Calibrate Input 2
Calibrate Input 3
Calibrate Output 1A
Calibrate Output 1B
Calibrate Output 2A
Calibrate Output 2B
Calibrate Rexmit 1
Calibrate Rexmit 2
Restore In1 Cal
Restore In2 Ca1
Restore In3 Ca1
```

Range
Parameter Description

Conditions for Parameters to Appear

Calibrate Input x (1 to 3)

Main Page > Factory > Calibration > Calibrate Input \mathbf{x} (1 to 3)

0.00 mV Thermocouple Store 0.000 mV calibration for the thermocouple input.	Yes (1)	$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \end{aligned}$ \mathbf{W}	$\begin{gathered} \text { Input } \\ {[1]} \\ {[2]} \\ {[3]} \end{gathered}$	Active: Always.
50.00 mV Thermocouple Store 50.000 mV calibration for the thermocouple input.	Yes (2)	$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & \mathrm{w} \end{aligned}$	$\begin{gathered} \text { Input } \\ {[1]} \\ {[2]} \\ {[3]} \end{gathered}$	Active: Always.
32° F Type J Store $32^{\circ} \mathrm{F}$ type J calibration.	Yes (3)	$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \end{aligned}$ w	Input [1] [2] [3]	Active: Always.
Ground Store calibration for ground at gains of 1 and 32 .	Yes (4)	$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & \mathrm{w} \end{aligned}$	$\begin{gathered} \text { Input } \\ {[1]} \\ {[2]} \\ {[3]} \end{gathered}$	Active: Always.
Lead Store calibration for lead resistance.	Yes (5)	$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & \mathrm{w} \end{aligned}$	$\begin{gathered} \text { Input } \\ {[1]} \\ {[2]} \\ {[3]} \end{gathered}$	Active: Always.
15.0 Ohms* Store 15.00Ω calibration for the 100Ω RTD input.	Yes (6)	$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & \mathrm{w} \end{aligned}$	Input [1] [2] [3]	Active: Always.
240.0 Ohms* Store 240.00Ω calibration for the 500Ω or $1 \mathrm{k} \Omega$ RTD input.	Yes (6)	$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & \mathrm{w} \end{aligned}$	$\begin{gathered} \text { Input } \\ {[1]} \\ {[2]} \\ {[3]} \end{gathered}$	Active: Always.
380.0 Ohms* Store 380.00Ω calibration for the 100Ω RTD input.	Yes (7)	$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & \mathrm{w} \end{aligned}$	$\begin{gathered} \text { Input } \\ {[1]} \\ {[2]} \\ {[3]} \end{gathered}$	Active: Always.
6080.0 Ohms* Store 6080.00Ω calibration for the 500Ω or $1 \mathrm{k} \Omega$ RTD input.	Yes (7)	$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & \mathrm{w} \end{aligned}$	$\begin{gathered} \text { Input } \\ {[1]} \\ {[2]} \\ {[3]} \end{gathered}$	Active: Always.
0.000V Store 0.000 V calibration for the process input.	Yes (8)	$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & \mathrm{w} \end{aligned}$	$\begin{gathered} \text { Input } \\ {[1]} \\ {[2]} \\ {[3]} \end{gathered}$	Active: Always.
$10.000 \mathrm{~V}$ Store 10.000 V calibration for the pro-	Yes (9)	1603 1608 1613 w	$\begin{gathered} \text { Input } \\ {[1]} \\ {[2]} \\ {[3]} \end{gathered}$	Active: Always.

*The tenth character of your model number determines what prompts appear and what input resistance values to use for the RTD calibration.
F4_ _-_ _ _-_(1 to 4)RG: 15.00 and 380.00Ω

F4_ _-_ _ _ _-_(5 to 8)RG: 240.00 and 6080.00Ω \checkmark NOTE:
For more information about how parameter settings affect the controller's operation, see Features Chapter.

Parameter Description	Range (Modbus Value)	Default	Modbus Register read/write [I/O, Set, Ch]	Conditions for Parameters to Appear
Calibrate Input x (1 to 3)				
Main Page > Factory > Calibration > Calibrate Input x (1 to 3)				
$4.000 \mathrm{~mA}$ Store 4 mA calibration for the process input.	Yes (10)		Input 1603 $[1]$ 1608 $[2]$ 1613 $[3]$ w	Active: Always.
20.000 mA Store 20 mA calibration for the process input.	Yes (11)		Input 1603 $[1]$ 1608 $[2]$ 1613 $[3]$ w	Active: Always.

Calibrate Output x (1A, 1B, 2A, 2B) and Retransmit x (1 and 2)
Main > Factory > Calibration / Calibrate Output x (1A, 1B, 2A, 2B) and Retransmit x (1 and 2)

4.000 mA | Store 4 mA calibra- |
| :--- |
| tion for the process |
| output. |

$\begin{aligned} & 0.000 \mathrm{~mA} \text { to } 6.000 \mathrm{~mA} \\ & (0 \text { to } 6000) \end{aligned}$	$\begin{aligned} & 4.000 \mathrm{~mA} \\ & (4000) \end{aligned}$	$\begin{aligned} & 1604 \\ & 1609 \\ & 1614 \\ & 1619 \\ & 1624 \\ & 1629 \end{aligned}$	$\begin{gathered} \text { Output } \\ {[1 \mathrm{~A}]} \\ {[1 \mathrm{~B}]} \\ {[2 \mathrm{~A}]} \\ {[2 \mathrm{~B}]} \\ \text { Rexmit } \\ {[1]} \\ {[2]} \end{gathered}$	Active: Always.
$\begin{aligned} & 0.000 \text { to } 24.000 \mathrm{~mA} \\ & \text { (} 0 \text { to } 24000 \text {) } \end{aligned}$	$\begin{aligned} & 20.000 \mathrm{~mA} \\ & (20000) \end{aligned}$	1605 1610 1615 1620 1625 1630 w	Output [1A] [1B] [2A] [2B] Rexmit [1]	Active: Always.
$\begin{aligned} & 0.000 \text { to } 3.000 \mathrm{~V} \\ & (0 \text { to } 3000) \end{aligned}$	$\begin{aligned} & 1.000 \mathrm{~V} \\ & (1000) \end{aligned}$	$\begin{aligned} & 1606 \\ & 1611 \\ & 1616 \\ & 1621 \\ & 1626 \\ & 1631 \\ & \text { w } \end{aligned}$	Output [1A] [1B] [2A] Rexmit [1] [2]	Active: Always.
$\begin{aligned} & 0.000 \text { to } 12.000 \mathrm{~V} \\ & (0 \text { to } 12000) \end{aligned}$	$\begin{aligned} & 10.000 \mathrm{~V} \\ & (10000) \end{aligned}$	$\begin{aligned} & 1607 \\ & 1612 \\ & 1617 \\ & 1622 \\ & 1627 \\ & 1632 \\ & \mathrm{w} \end{aligned}$	Output [1A] [1B] [2A] [2B] Rexmit [1] [2]	Active: Always.

Restore Input x (1 to 3) Calibration
Main > Factory > Calibration / Restore Input x (1 to 3) Calibration

Restore Input x (1 to 3)	Modbus:		1601 w
Calibration	Input 1 (0)		
Restores original factory calibration values.	Input 2 (1)	Input 3 (2)	

\checkmark NOTE:
Press the Information Key for more task-related tips.

10

Chapter Ten: Diagnostics

Overview

Diagnostic Menu parameters (on the Factory Page) provide information about the controller unit that is useful in troubleshooting. For example, the Model parameter will identify the 12 -digit Series F4 part number. The Out1A parameter will identify what type of output has been selected for Output 1 A .

Diagnostic Menu Map

Model
Mfg Date
Serial 非
Software 非
Revision
In1
In2
In3
Out1A
Out1B
Out2A
Out2B
Retrans1
Retrans2
In1 AtoD
In2 AtoD
In3 AtoD
CJC1 AtoD
CJC2 AtoD
CJC1 Temp
CJC2 Temp
Line Freq

\checkmark NOTE:

To see how all the pages, menus and parameters are grouped, refer to the inside back cover of this manual.

Select the parameter by pressing the Right Key 0. The information will appear on the Lower Display.
Some of the parameters in the Diagnostic Menu provide information for factory use only.
To reset all parameters to their original factory values, use the Full Defaults parameter under the Test Menu.

Test Menu Map

Test Outputs
Display Test
Full Defaults
\checkmark NOTE:
For more information about how parameter settings affect the controller's operation, see the Features Chapter.

Modbus
Register read/write
Default [I/O, Set, Ch]

Conditions for Parameters to Appear

[^3]
Diagnostic Menu Parameter Table (Factory Page)

Test Outputs	All Off (0)	1514 w	Active: Always.
Choose output to test.	Output 1A		
	Output 1B (2)		\checkmark NOTE: Must be in the Calibration or Test Menu at the display for this prompt to work via communications.
	Output 2A (3)		
	Output 2B		
	Retransmit 1		
	Retransmit 2		
	Alarm 1		
	Alarm 2		
	Digital Out 1		
	Digital Out 2 (10)		
	Digital Out 3 (11)		
	Digital Out 4 (12)		
	Digital Out 5 (13)		
	Digital Out 6 (14)		
	Digital Out 7 (15)		
	Digital Out 8 (16)		
	All On . (17)		
	Communications (18)		
Display Test	Yes (1)	1513 w	Active: Always.
Checks LED display segments by turning them on and off.			
Full Defaults	Default all values? Yes (800)	1602 w	Active: Always.
Causes all parameters and profile values to revert to their factory default settings.			

Diagnostic Menu Parameter Table (Factory Page)

| Parameter | Description | |
| :--- | :--- | :--- | :--- |
| | | Test |

Main > Factory > Test

Test

Yes (1)
Checks LED display segments by turning them on and off.

Full Defaults
Causes all parameters and profile values to revert to their factory default settings.

Conditions for Parameters to Appear

11

Chapter Eleven: Installation

Dimensions

Figure 11.1a - Front View Dimensions and Gasket Gap Dimension.

Figure 11.1b — Side and Top View and Dimensions.

Panel Dimensions

Figure 11.2a — Multiple Panel Cutout Dimensions.

Installing the Series F4 Controller

Installing and mounting requires access to the back of the panel.
Tools required: one \#2 Phillips screwdriver.

1. Make the panel cutout using the mounting template dimensions in this chapter.
2. Insert the controller into the panel cutout. Check that the rubber gasket lies in its slot at the back of the bezel. Slide the retention collar over the case, with open holes facing the back of the case.

Figure 11.2b - Gasket Seated on the Bezel.
3. Align the mounting bracket with the screws tips pointed toward the panel. Squeezing the bowed sides of the bracket, push it gently but firmly over the case until the hooks snap into the slots at the front of the case.
4. If the installation does not require a NEMA 4X seal, tighten the four screws with the Phillips screwdriver just enough to eliminate the spacing between the rubber gasket and the mounting panel.
For a NEMA 4X seal, tighten the four screws until the gap between the bezel and panel surface is .020 in . maximum. (See figure 11.1 b). Make sure that you cannot move the controller back and forth in the cutout. If you can, you do not have a proper seal. Do not over tighten. Over tightening could damage the the mounting bracket.

Removing the Series F4 Controller

The controller can be removed most easily by disengaging the mounting bracket hooks and pushing the controller forward through the panel. Be ready to support it as it slides forward through the panel.
Tools required: one \#2 Phillips screwdriver, one flathead screwdriver and some means of supporting the controller as it slides out the front of the panel.

1. Remove all the wiring connectors from the back of the controller. Using the Phillips screwdriver, unscrew the four screws on the mounting bracket (two on top, two on bottom) until the tips are completely retracted into the shafts.
2. Slide the tip of a flat screwdriver between the case and the center top side of the mounting bracket. Rotate the screwdriver 90 degrees, stretching the bracket away from the case so the hooks on the bracket disengage from the slots on the case. Hold the bracket and press the controller forward slightly to prevent the disengaged hooks from snapping back into the slots.
3. Repeat this operation to disengage the hooks on the bottom side of the mounting bracket.
4. Press with one or two fingers on the lower half of the back of the unit so that the controller slides forward through the panel. Hold the bracket steady; do not pull back. Be ready to support the controller as it comes through the front panel. Remove the mounting brackets and retention collar from the back side of the panel.

Figure 11.3a - Retention Collar and Mounting Bracket.

Figure 11.3b — Tightening the Screws.

Figure 11.3c — Disengaging the Mounting Bracket.

Notes

12

Chapter Twelve: Wiring

Input-to-Output Isolation 12.1
Power Wiring 12.2
Sensor Installation Guidelines 12.2
Input 1 12.3
Inputs x (2 and 3) 12.4
Digital Inputs x (1 to 4) 12.6
Outputs x (1A, 1B, 2A and 2B) 12.7
Retransmit and Alarm Output 12.8
Digital Outputs x (1 to 8) 12.9
Communications Wiring 12.10
Wiring Example 12.12
Wiring Notes 12.13

Wiring the Series F4

Wiring options depend on the model number, which is printed on the label on the back of the controller. The model number codes are explained in the Appendix.
The labels on the sides and back of the controller contain some basic wiring information.

Input-to-Output Isolation

The Series F4 uses optical and transformer isolation to provide a barrier to prevent ground loops when using grounded sensors and/or peripheral equipment.
Here is a breakdown of the isolation barriers:

- Analog input 1 and all the digital inputs and outputs are grouped together.
- Analog inputs 2 and 3 are grouped together.
- All the control outputs and retransmit outputs are grouped together.
- Both alarm outputs are grouped together.
- Communications is isolated from the other inputs and outputs.

Figure 12.1 - Isolation Blocks.

WARNING:
Provide a labeled switch or circuit breaker connected to the Series F4 power wiring as the means of disconnection for servicing. Failure to do so could result in damage to equipment and/or property, and/or injury or death to personnel.

WARNING:

To avoid damage to property and equipment, and/or injury of loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4. Failure to do so could result in such damage, and/or injury or death.

CAUTION:

Maintain isolation

 between analog inputs 2 and 3 , and between analog input 1 and digital inputs 1 to 4 to prevent a ground loop. A ground loop may cause incorrect readings. Failure to follow this guideline could result in damage to equipment and product.
Power Wiring

Use only number 14, AWG copper conductor rated for at least $60^{\circ} \mathrm{C}$.
100 to $240 \mathrm{~V} \approx$ ($\mathrm{ac} / \mathrm{dc}$), nominal (85 to 264 actual) F4 _ H - \qquad -
The Series F4 has a non-operator-replaceable fuse Type T (time-lag) rated at 2.0 or $5.0 \mathrm{~A} @ 250 \mathrm{~V}$.

Figure 12.2 — Power wiring.

Sensor Installation Guidelines

Thermocouple inputs: Extension wire for thermocouples must be of the same alloy as the thermocouple to limit errors.
If a grounded thermocouple is required for input 2 , the signal to input 3 must be isolated to prevent possible ground loops.
RTD input: Each 1 of lead wire resistance can cause a $+2^{\circ} \mathrm{F}$ error when using a two-wire RTD. A three-wire RTD sensor overcomes this problem. All three wires must have the same electrical resistance (i.e., same gauge, same length, multi-stranded or solid, same metal).
Process input: Isolation must be maintained between input 2 and input 3. If both input 2 and input 3 are process signals, a separate power supply and transmitter must be used for each input. These inputs must be electrically isolated from one another to prevent ground loops.

Input 1

WARNING:
To avoid damage to property and equipment, and/or injury of loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4. Failure to do so could result in such damage, and/or injury or death.

CAUTION:Maintain isolation between analog inputs 2 and 3, and between analog input 1 and digital inputs 1 to 4 to prevent a ground loop. A ground loop may cause incorrect readings. Failure to follow this guideline could result in damage to equipment and product.

Figure 12.3a - Thermocouple
Available on all units
Impedance: $20 \mathrm{M} \Omega$

Figure 12.3b - RTD (2- or 3-Wire) 100 Ω Platinum

Available on all units

Figure $12.3 \mathrm{c}-\mathbf{0}-\mathbf{5} \mathrm{V}=\mathbf{1 - 5} \mathrm{V}=$ or $\mathbf{0 - 1 0 V}=$ (dc) Process
Available on all units.
Input impedance: $20 \mathrm{k} \Omega$

Figure 12.3d - 0-20mA or 4-20mA Process
Available on all units.
Input impedance: 100Ω

Figure $12.3 \mathrm{e} \mathbf{- 0}$ to $\mathbf{5 0 m V}$
Available on all units
Impedance: $20 \mathrm{M} \Omega$

Inputs x (2 and 3)

1
WARNING:
To avoid damage to property and equipment, and/or injury of loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4. Failure to do so could result in such damage, and/or injury or death.

CAUTION:

Maintain isolation between analog inputs 2 and 3 , and between analog input 1 and digital inputs 1 to 4 to prevent a ground loop. A ground loop may cause incorrect readings. Failure to follow this guideline could result in damage to equipment and product.

Figure 12.4a - Thermocouple
F4S \qquad 6 - \qquad or F4D _ - \qquad -- - - -

Impedance: $20 \mathrm{M} \Omega$

Figure 12.4b - RTD (2-wire) 100 Ω Platinum
F4S _- _ _ 6 - _ - _ _ or F4D _ _ _ _ _ -- _ _ _ Input 2 (2)

Figure 12.4c - RTD (3-wire) $\mathbf{1 0 0} \Omega$ Platinum
F4S _- _ _ 6 - _ _ _ _ or or F4D _- _ _ _ -- _ _ _ _

Inputs x (2 and 3) (continued)

WARNING:
To avoid damage to property and equipment, and/or injury of loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4. Failure to do so could result in such damage, and/or injury or death.

CAUTION:
Maintain isolation between analog inputs 2 and 3, and between analog input 1 and digital inputs 1 to 4 to prevent a ground loop. A ground loop may cause incorrect readings. Failure to follow this guideline could result in damage to equipment and product.

Figure $12.5 \mathrm{a}-\mathbf{0}$ to $5 \mathrm{~V}=\mathbf{=}$, $\mathbf{1}$ to $\mathbf{5 V}=$ or $\mathbf{0}$ to $\mathbf{1 0 V}=$ (dc) Process
F4S - _ _ _ 6 - \qquad or F4D _- \qquad - -

Input impedance: $20 \mathrm{k} \Omega$

Figure 12.5b - $\mathbf{0}$ to 20mA or 4 to 20mA Process
F4S \qquad 6 - \qquad or F4D _- \qquad - _ - _ _

Input impedance: 100Ω

Figure 12.5 c - $\mathbf{0}$ to 50 mV
F4S \qquad 6 - \qquad or F4D _- \qquad -- - - -

Impedance: $20 \mathrm{M} \Omega$

Digital Inputs x (1 to 4)

WARNING:
To avoid damage to property and equipment, and/or injury of loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4. Failure to do so could result in such damage, and/or injury or death.

CAUTION:

Maintain isolation between analog inputs 2 and 3, and between analog input 1 and digital inputs 1 to 4 to prevent a ground loop. A ground loop may cause incorrect readings. Failure to follow this guideline could result in damage to equipment and product.

Figure 12.6 - Digital Inputs x (1 to 4)

Voltage input

0 to 2V=. (dc) Event Input Low State
3 to 36V=- (dc) Event Input High State
Contact closure
0 to $2 \mathrm{k} \Omega$ Event Input Low State
$>23 \mathrm{k} \Omega$ Event Input High State

Outputs x (1A, 1B, 2A and 2B)

NOTE:
Switching inductive loads (relay coils, solenoids, etc.) with the mechanical relay, switched dc or solid-state relay output options requires use of an R.C. suppressor.
Watlow carries the R.C. suppressor Quencharc brand name, which is a trademark of ITW Paktron. Watlow Part No. 0804-0147-0000.

WARNING:
To avoid damage to property and equipment, and/or injury of loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4. Failure to do so could result in such damage, and/or injury or death.

Figure 12.7a - Solid-state Relay
$24 \mathrm{~V} \sim$ (ac) minimum, $253 \mathrm{~V} \sim$ (ac) maximum
0.5 amps , off-state impedance $31 \mathrm{M} \Omega$

Figure 12.7b - Switched DC, Open Collector

- Switched dc configuration

COM not used
$\mathrm{DC}+=22$ to $28 \mathrm{~V}=$ (dc)
Maximum supply current is 30 mA

- Open collector output

DC+ not used
DC- $=42 \mathrm{~V}=$ (dc) maximum
Off: 10 mA maximum leakage
On: $0.2 \mathrm{~V} @ 0.5 \mathrm{amps}$ sink

Switched DC

Output 1A

Output 1B

Figure 12.8a - $\mathbf{0}$ to 20mA, 4 to 20mA, $\mathbf{0}$ to $\mathbf{5 V}=1$ to $\mathbf{5 V}=$ and 0 to

NOTE:
Switching inductive loads (relay coils, solenoids, etc.) with the mechanical relay, switched dc or solid-state relay output options requires use of an R.C. suppressor.
Watlow carries the R.C. suppressor Quencharc brand name, which is a trademark of ITW Paktron. Watlow Part No. 0804-0147-0000.

WARNING:
To avoid damage to property and equipment, and/or injury of loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4. Failure to do so could result in such damage, and/or injury or death. 10V=(dc) Process

Output 1A Output 1B Output 2A Output 2B

Retransmit and Alarm Output

Figure 12.8b - Retransmit Outputs x (1 and 2)
mA maximum load impedance: 800Ω
volts (dc) minimum load impedance: $1 \mathrm{k} \Omega$

Output 1

Output 2

Figure 12.8c - Alarm Outputs x (1 and 2)

Electromechanical relay without contact suppression
Form C, 2 amp , off-state impedance: $31 \mathrm{M} \Omega$

Digital Outputs x (1 to 8)

WARNING:
To avoid damage to property and equipment, and/or injury of loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4. Failure to do so could result in such damage, and/or injury or death.

Figure 12.9a - Digital Outputs x (1 to 8)
Digital output supply: $+5 \mathrm{~V}=(\mathrm{dc}) \pm 5 \%$
Maximum source current: 80 mA (total for all 8 switch dc)
Open collector:
Off (open): $42 \mathrm{~V}=$ (dc) maximum @ $10 \mu \mathrm{~A}$
On (closed): $0.2 \mathrm{~V}=$ (dc) maximum @ 50 mA sink

Figure 12.9b - Open Collector Example

Figure 12.9c - Switched DC Example

Communications Wiring

\triangle
WARNING:
To avoid damage to property and equipment, and/or injury of loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4. Failure to do so could result in such damage, and/or injury or death.

Figure 12.10a - EIA/TIA 485 and EIA/TIA 232 Communications

Figure 12.10 b - Termination for EIA-232 to EIA-485 Converter

If the system does not work properly, it may need termination resistors at each end of the network. A typical installation would require a 120 -ohm resistor across the transmit/receive terminals (12 and 13) of the last controller in the network and the converter box or serial card. Pull-up and pull-down 1 k resistors may be needed on the first unit to maintain the correct voltage during the idle state.

Figure 12.10c - EIA/TIA-232 Connections

Wire Color	F4 $\mathbf{2 3 2}$	DB 9 Connector	DB25 Connector
White	TX Pin 14	RX Pin 2	RX Pin 3
Red	RX Pin 15	TX Pin 3	TX Pin 2
Black	GND Pin 16	Gnd Pin 5	GND Pin 7
Green	GND Pin 24	N/U Pin 9	N/U Pin 22
Shield	N/C	Gnd Pin 5	Gnd Pin 7

Communications Wiring (continued)

WARNING:
To avoid damage to property and equipment, and/or injury of loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4. Failure to do so could result in such damage, and/or injury or death.

NOTE:
The CMC converter requires an external power supply when used with a laptop computer.

Figure 12.11a - EIA/TIA 232 to EIA/TIA 485 Conversion

B\&B Converter (B\&B Electronics Manufacturing Company, (815) 433-5100, www.bb-elec.com)

CMC Converter (CMC Connecticut Micro-Computer, Inc., 800-426-2872, www.2cmc.com)

Figure 12.11b - GPIB Conversion to EIA/TIA 232 or EIA/TIA 485 Communications with Modbus RTU

ICS GPIB Bus Interface (ICS Electronics, (925) 416-1000, www.icselect.com)

Wiring Example

WARNING:
To avoid damage to property and equipment, and/or injury of loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4. Failure to do so could result in such damage, and/or injury or death.

WARNING:
Install high- or low-temperature-limit control protection in systems where an overtemperature fault condition could present a fire hazard or other hazard. Failure to install temperature limit control protection where a potential hazard exists could result in damage to equipment, property and injury to personnel.

Figure 12.12 - System Wiring Example.

Appendix

Glossary A. 2
Declaration of Conformity A. 5
Specifications (Single and Dual Channel) A. 6
Ordering Information (Single and Dual) A. 7
Index A. 8
List of Figures A. 13
Software Map A. 16

Glossary

ac (~) - See alternating current.
$\mathbf{a c} / \mathbf{d c}$ (\approx) - Both direct and alternating current.
alternating current - An electric current that reverses at regular intervals, and alternates positive and negative values.
American Wire Gauge (AWG) - A standard of the dimensional characteristics of wire used to conduct electrical current or signals. AWG is identical to the Brown and Sharpe ($\mathrm{B} \& \mathrm{~S}$) wire gauge.
auto-tune - A feature that automatically sets temperature control PID values to match a particular thermal system.
battery - BR1225, retains volatile memory. Sevenyear shelf life, indefinite life with power applied to unit.
baud rate - The rate of information transfer in serial communications, measured in bits per second.
burst fire - A power control method that repeatedly turns on and off full ac cycles. Also called zerocross fire, it switches close to the zero-voltage point of the ac sine wave. Variable-time-base burst fire selectively holds or transits ac cycles to achieve the desired power level. See zero cross.
calibration accuracy - Closeness between the value indicated by a measuring instrument and a physical constant or known standard.
calibration offset - An adjustment to eliminate the difference between the indicated value and the actual process value.
cascade - Control algorithm in which the output of one control loop provides the set point for another loop. The second loop, in turn, determines the control action.
CE - A manufacturer's mark that demonstrates compliance with European Union (EU) laws governing products sold in Europe.
chatter - The rapid on-off cycling of an electromechanical relay or mercury displacement relay due to insufficient controller bandwidth. It is commonly caused by excessive gain, little hysteresis and short cycle time.

CJC - See cold junction compensation.
closed loop - A control system that uses a sensor to measure a process variable and makes decisions based on that feedback.
cold junction - See junction, cold.
cold junction compensation - Electronic means to compensate for the effective temperature at the
cold junction.
control mode - The type of action that a controller uses. For example, on/off, time proportioning, PID, automatic or manual, and combinations of these.
cycle time - The time required for a controller to complete one on-off-on cycle. It is usually expressed in seconds.
deadband - The range through which a variation of the input produces no noticeable change in the output. In the dead band, specific conditions can be placed on control output actions. Operators select the deadband value.
default parameters - The programmed instructions that are permanently stored in the microprocessor software.
derivative - The rate of change in a process variable. Also known as rate. See PID.
derivative control (D) - The last term in the PID control algorithm. Action that anticipates the rate of change of the process, and compensates to minimize overshoot and undershoot. Derivative control is an instantaneous change of the control output in the same direction as the proportional error. This is caused by a change in the process variable (PV) that decreases over the time of the derivative (TD). The TD is in units of seconds.
Deutsche Industrial Norm (DIN) - A set of technical, scientific and dimensional standards developed in Germany. Many DIN standards have worldwide recognition.
droop - In proportional controllers, the difference between set point and actual value after the system stabilizes.
duty cycle - The percentage of a cycle time in which the output is on.
EIA - See Electronics Industries of America.
EIA/TIA -232, -422, -423 and -485 - Data communications standards set by the Electronic Industries of America and Telecommunications Industry Association. Formerly referred to as RS- (Recognized Standard).
Electronics Industries of America (EIA) - An association in the US that establishes standards for electronics and data communications.
external transmitter power supply - A dc voltage source that powers external devices.
filter, digital - A means to slow the response of a system when inputs change unrealistically or too fast. Equivalent to a standard resistor-capacitor (RC) filter.
form \mathbf{A} - A single-pole, single-throw relay that uses only the normally open (NO) and common contacts. These contacts close when the relay coil is energized. They open when power is removed from the coil.
form B - A single-pole, single-throw relay that uses only the normally closed (NC) and common contacts. These contacts open when the relay coil is energized. They close when power is removed from the coil.
form \mathbf{C} - A single-pole, double-throw relay that uses the normally open (NO), normally closed (NC) and common contacts. The operator can choose to wire for a form A or form B contact.

Hertz (Hz) - Frequency, measured in cycles per second.
hysteresis - A change in the process variable required to re-energize the control or alarm output. Sometimes called switching differential.
integral - Control action that automatically eliminates offset, or droop, between set point and actual process temperature.
integral control (I) - A form of temperature control. The I of PID. See integral.
isolation - Electrical separation of sensor from high voltage circuitry. Allows use of grounded or ungrounded sensing element.
JIS - See Joint Industrial Standards.
Joint Industrial Standards (JIS) - A Japanese agency that establishes and maintains standards for equipment and components. Also known as JISC (Japanese Industrial Standards Committee), its function is similar to Germany's Deutsche Industrial Norm (DIN).
junction, cold - Connection point between thermocouple metals and the electronic instrument. See junction, reference.
junction, reference - The junction in a thermocouple circuit held at a stable, known temperature (cold junction). Standard reference temperature is $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$.

LCD - See liquid crystal display.
LED - See light emitting diode.
light emitting diode (LED) - A solid state electronic device that glows when electric current passes through it.
liquid crystal display (LCD) - A type of digital display made of a material that changes reflectance or transmittance when an electrical field is applied to it.
limit or limit controller - A highly reliable, discrete safety device (redundant to the primary controller) that monitors and limits the temperature of the process, or a point in the process. When temperature exceeds or falls below the limit set point, the limit controller interrupts power through the load circuit. A limit controller can protect equipment and people when it is correctly installed with its own power supply, power lines, switch and sensor.
manual mode - A selectable mode that has no automatic control aspects. The operator sets output levels.

Modbus ${ }^{\mathrm{TM}}$ - A digital communications protocol owned by AEG Schneider Automation for industrial computer networks.

Modbus ${ }^{\text {™ }}$ RTU - $\underline{\text { Remote }}$ Terminal Unit, an individual Modbus ${ }^{\text {nT }}$-capable device on a network.
NEMA 4X - A NEMA (National Electrical Manufacturer's Association) specification for determining resistance to moisture infiltration. This rating certifies the controller as washable and corrosion resistant.
on/off controller - A temperature controller that operates in either full on or full off modes.
open loop - A control system with no sensory feedback.
output - Control signal action in response to the difference between set point and process variable.
overshoot - The amount by which a process variable exceeds the set point before it stabilizes.
page - A fixed length block of data that can be stored as a complete unit in the computer memory.
\mathbf{P} control - Proportioning control.
PD control - Proportioning control with derivative (rate) action.

PDR control - Proportional derivative control with manual reset, used in fast responding systems where the reset causes instabilities. With PDR control, an operator can enter a manual reset value that eliminates droop in the system.
PI control - Proportioning control with integral (auto-reset) action.

PID - Proportional, integral, derivative. A control mode with three functions: proportional action dampens the system response, integral corrects for droop, and derivative prevents overshoot and undershoot.
process variable - The parameter that is controlled or measured. Typical examples are temperature, relative humidity, pressure, flow, fluid level,
events, etc. The high process variable is the highest value of the process range, expressed in engineering units. The low process variable is the lowest value of the process range.
proportional - Output effort proportional to the error from set point. For example, if the proportional band is 20° and the process is 10° below set point, the heat proportioned effort is 50 percent. The lower the PB value, the higher the gain.
proportional band ($\mathbf{P B}$) - A range in which the proportioning function of the control is active. Expressed in units, degrees or percent of span. See PID.
proportional control - A control using only the P (proportional) value of PID control.
radio frequency interference (RFI) - Electromagnetic waves between the frequencies of 10 KHz and 300 GHz that can affect susceptible systems by conduction through sensor or power input lines, and by radiation through space.
ramp - A programmed increase in the temperature of a set point system.
range - The area between two limits in which a quantity or value is measured. It is usually described in terms of lower and upper limits.
rate - Anticipatory action that is based on the rate of temperature change, and compensates to minimize overshoot and undershoot. See derivative.
rate band - A range in which the rate function of a controller is active. Expressed in multiples of the proportional band. See PID.
reference junction - see junction, reference.
reset - Control action that automatically eliminates offset, or droop, between set point and actual process temperature. Also see integral.
automatic reset - The integral function of a PI or PID temperature controller that adjusts the process temperature to the set point after the system stabilizes. The inverse of integral.
automatic power reset - A feature in latching limit controls that does not recognize power outage as a limit condition. When power is restored, the output is re-energized automatically, as long as the temperature is within limits.
manual reset - 1) A feature on a limit control that requires human intervention to return the limit to normal operation after a limit condition has occurred. 2) The adjustment of a proportional control to raise the proportional band to compensate for droop.
resistance temperature detector (RTD) - A sensor that uses the resistance temperature charac-
teristic to measure temperature. There are two basic types of RTDs: the wire RTD, which is usually made of platinum, and the thermistor, which is made of a semiconductor material. The wire RTD is a positive temperature coefficient sensor only, while the thermistor can have either a negative or positive temperature coefficient.
RFI - See radio frequency interference.
RTD - See resistance temperature detector.
serial communications - A method of transmitting information between devices by sending all bits serially over a single communication channel.
set point - The desired value programmed into a controller. For example, the temperature at which a system is to be maintained.
SI (Systeme Internationale) - The system of standard metric units.
switching differential - See hysteresis.
thermal system - A regulated environment that consists of a heat source, heat transfer medium or load, sensing device and a control instrument.
thermocouple (\mathbf{t} / \mathbf{c}) - A temperature sensing device made by joining two dissimilar metals. This junction produces an electrical voltage in proportion to the difference in temperature between the hot junction (sensing junction) and the lead wire connection to the instrument (cold junction).
thermocouple break protection - The ability of a control to detect a break in the thermocouple circuit and take a predetermined action.
time proportioning control - A method of controlling power by varying the on/off duty cycle of an output. This variance is proportional to the difference between the set point and the actual process temperature.
transmitter - A device that transmits temperature data from either a thermocouple or a resistance temperature detector (RTD) by way of a twowire loop. The loop has an external power supply. The transmitter acts as a variable resistor with respect to its input signal. Transmitters are desirable when long lead or extension wires produce unacceptable signal degradation.
WatView - A Windows-based software application for communicating with and configuring Watlow controllers.
zero cross - Action that provides output switching only at or near the zero-voltage crossing points of the ac sine wave. See burst fire.
zero switching - See zero cross.

Series F4

Watlow
an ISO 9001 approved facility since 1996.
1241 Bundy Blvd.
Winona, MN 55987 USA
Declares that the following product:
Designation: Series F4
Model Numbers: F4 (S, D or P) (H or L) - (C, E, F or K) (A, C, E, F or K) (A, C, F or K) (A, C, F, K, 0 or 6) - (0,1 or 2) (Any three numbers of letters)
Classification: Temperature control, Installation Category II, Pollution degree 2 continuous unmonitored operation, IP65 Front panel
Rated Voltage: $\quad 100$ to $240 \mathrm{~V} \sim(\mathrm{ac})$ or 24 to 28 V (ac or dc), $50 / 60 \mathrm{~Hz}$
Rated Power: 39 VA maximum
Meets the essential requirements of the following European Union Directives by using the relevant standards show below to indicate compliance.

2006/95/EC Low-Voltage Directive

EN 61010-1 2001
Safety Requirements of electrical equipment for measurement, control and laboratory use. Part 1: General requirements

These devices contain lead solder and are not RoHS compliant. They are a Control Devices and fall outside the scope of 2002/95/EC Directive.

Raymond D. Feller III
Name of Authorized Representative
General Manager
Title of Authorized Representative
Signature of Authorized Representative

Specifications

Universal Analog Inputs 1 (2 and 3 optional)

- Update rates, $\ln 1: 20 \mathrm{~Hz}$; $\ln 2$ and $\operatorname{In} 3: 10 \mathrm{~Hz}$ Thermocouple
- Type J, K, T, N, C (W5), E, PTII, D (W3), B, R, S RTD
- 2- or 3-wire platinum, 100
- JIS or DIN curves, 1.0 or 0.1 indication

Process

- Input resolution 50,000 bits at full scale
- Range selectable: 0 to $10 \mathrm{~V}=$ (dc), 0 to $5 \mathrm{~V}=$ (dc), 1 to $5 \mathrm{~V}=$ (dc), 0 to $50 \mathrm{mV}, 0$ to $20 \mathrm{~mA}, 4$ to 20 mA
- Voltage input impedance 20 k
- Current input impedance 100

Digital Inputs (4)

- Update rate: 10 Hz
- Contact or dc voltage ($36 \mathrm{~V}=$ - (dc) maximum)
- 10 k input impedance

Control Outputs (1A, 1B, 2A, 2B)

- Update rate: 20 Hz

Open Collector/Switched DC

- Internal load switching (nominal): Switched dc, 22 to $28 \mathrm{~V}=$ (dc), limited @ 30 mA
- External load switching (maximum): Open collector 42V= (dc) @ 0.5 A
Solid-state Relay
- Zero switched, optically coupled, 0.5 A @ $24 \mathrm{~V} \sim$ (ac) minimum, 253V~ (ac) maximum
Process Outputs (Optional Retransmit)
- Update rate: 1 Hz
- User-selectable 0 to $10 \mathrm{~V}=$ (dc), 0 to $5 \mathrm{~V}=$ (dc), 1 to $5 \mathrm{~V}=$ (dc) @ 1 k min., 0 to $20 \mathrm{~mA}, 4$ to 20 mA @ 800 max.
- Resolution:
dc ranges: 2.5 mV nominal
mA ranges: $5 \mu \mathrm{~A}$ nominal
- Calibration accuracy:
dc ranges: $\pm 15 \mathrm{mV}$
mA ranges: $\pm 30 \mu \mathrm{~A}$
- Temperature stability $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Alarm Outputs

- Output update rate 1 Hz
- Electromechanical relay, Form C, 2 A @ $30 \mathrm{~V}=$ (dc) or $240 \mathrm{~V} \sim$ (ac) maximum
Digital Outputs (8)
- Update rate: 10 Hz
- Open collector output
- Off: $42 \mathrm{~V}=$ (dc) max @ $10 \mu \mathrm{~A}$
- On: 0.2V = (dc) max @ 50 mA sink
- Internal supply: $5 \mathrm{~V}=$ (dc), @ 80 mA

Communications

EIA-232 and EIA-485 serial communications with Modbus ${ }^{\text {TM }}$ RTU protocol

Safety and Agency Approvals

- UL®/C-UL 916-listed, File \# E185611

Process Control Equipment

- CE EMC to EN 61326
- CE Safety to EN 61010
- IP65 and NEMA 4X

Terminals

- Touch-safe, removable terminal blocks, accepts 12 - to 22-gauge wire

Power

- 100 to $240 \mathrm{~V} \sim(\mathrm{ac}),-15 \%,+10 \% ; 50 / 60 \mathrm{~Hz}, \pm 5 \%$
- 39VA maximum power consumption
- Data retention upon power failure via nonvolatile memory (seven years for battery-backed RAM). Sensor input isolation from input to input to output to communication circuitry is $500 \mathrm{~V} \sim(\mathrm{ac})$.
Operating Environment
- 32 to $130^{\circ} \mathrm{F}\left(0\right.$ to $55^{\circ} \mathrm{C}$)
- 0 to $90 \% \mathrm{RH}$, non-condensing
- Storage temperature: -40 to $158^{\circ} \mathrm{F}\left(-40\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

Accuracy

- Calibration accuracy and sensor conformity: $\pm 0.1 \%$ of span $\pm 1^{\circ} \mathrm{C} @ 77^{\circ} \mathrm{F} \pm 5^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}\right)$ ambient, and rated line voltage $\pm 10 \%$ with the following exceptions: Type T, 0.12% of span for $-200^{\circ} \mathrm{C}$ to $-50^{\circ} \mathrm{C}$ Types R and S, 0.15% of span for $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ Type B, 0.24% of span for $870^{\circ} \mathrm{C}$ to $1700^{\circ} \mathrm{C}$
- Accuracy span: Less than or equal to operating ranges, $1000^{\circ} \mathrm{F}\left(540^{\circ} \mathrm{C}\right)$ minimum
- Temperature stability: $\pm 0.1^{\circ} \mathrm{F} /{ }^{\circ} \mathrm{F}\left(\pm 0.1^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}\right)$ rise in ambient for thermocouples
- $\pm 0.05^{\circ} \mathrm{F} /{ }^{\circ} \mathrm{F}\left(\pm 0.05^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}\right)$ rise in ambient for RTD sensors

Displays

- Update rate: 2 Hz
- Process: 5, seven-segment LED red
- Control interface display: high-definition LCD green

Sensor Operating Ranges:

Type J:	32	to	$1500^{\circ} \mathrm{F}$	or	0	to	$815^{\circ} \mathrm{C}$
Type K:	-328	to	$2500^{\circ} \mathrm{F}$	or	-200	to	$1370^{\circ} \mathrm{C}$
Type T:	-328	to	$750^{\circ} \mathrm{F}$	or	-200	to	$400^{\circ} \mathrm{C}$
Type N:	32	to	$2372^{\circ} \mathrm{F}$	or	0	to	$1300^{\circ} \mathrm{C}$
Type E:	-328	to	$1470^{\circ} \mathrm{F}$	or	-200	to	$800^{\circ} \mathrm{C}$
Type C:	32	to	$4200^{\circ} \mathrm{F}$	or	0	to	$2315^{\circ} \mathrm{C}$
Type D:	32	to	$4352^{\circ} \mathrm{F}$	or	0	to	$2400^{\circ} \mathrm{C}$
Type PTII:	32	to	$2543^{\circ} \mathrm{F}$	or	0	to	$1395^{\circ} \mathrm{C}$
Type R:	32	to $3200^{\circ} \mathrm{F}$	or	0	to	$1760^{\circ} \mathrm{C}$	
Type S:	32	to $3200^{\circ} \mathrm{F}$	or	0	to	$1760^{\circ} \mathrm{C}$	
Type B:	32	to $3300^{\circ} \mathrm{F}$	or	0	to	$1816^{\circ} \mathrm{C}$	
RTD (DIN): -328	to $1472^{\circ} \mathrm{F}$	or	-200	to	$800^{\circ} \mathrm{C}$		
RTD (JIS): -328	to	$1166^{\circ} \mathrm{F}$	or	-200	to	$800^{\circ} \mathrm{C}$	

Process: 19999 to 30000 units

Sensor Accuracy Ranges:

Input ranges

Type J:	32	to	$1382^{\circ} \mathrm{F}$	or	0	to	$750^{\circ} \mathrm{C}$
Type K:	-328	to	$2282^{\circ} \mathrm{F}$	or	-200	to	$1250^{\circ} \mathrm{C}$
Type T:	-328	to	$662^{\circ} \mathrm{F}$	or	-200	to	$350^{\circ} \mathrm{C}$
Type N:	32	to	$2282^{\circ} \mathrm{F}$	or	0	to	$1250^{\circ} \mathrm{C}$
Type E:	-328	to	$1470^{\circ} \mathrm{F}$	or	-200	to	$800^{\circ} \mathrm{C}$
Type C(W5)	32	to	$4200^{\circ} \mathrm{F}$	or	0	to	$2315^{\circ} \mathrm{C}$
Type D(W3)	32	to	$4352^{\circ} \mathrm{F}$	or	0	to	$2400^{\circ} \mathrm{C}$
Type PTII:	32	to	$2540^{\circ} \mathrm{F}$	or	0	to	$1393^{\circ} \mathrm{C}$
Type R:	32	to $2642^{\circ} \mathrm{F}$	or	0	to	$1450^{\circ} \mathrm{C}$	
Type S:	32	to $2642^{\circ} \mathrm{F}$	or	0	to	$1450^{\circ} \mathrm{C}$	
Type B: 1598	to $3092^{\circ} \mathrm{F}$	or	870	to	$1700^{\circ} \mathrm{C}$		
RTD (DIN): -328	to $1472^{\circ} \mathrm{F}$	or	-200	to	$800^{\circ} \mathrm{C}$		
RTD (JIS): -328	to	$1166^{\circ} \mathrm{F}$	or	-200	to	$630^{\circ} \mathrm{C}$	

1/4 DIN Single-Channel Ramping Controller

Series F4

1/4 DIN, Single-Channel Ramping Controller

Single-Channel

Ramping Controller
1 universal analog input, 4 digital inputs, 8 digital outputs, 2 alarms, EIA-232/485 communications

Power Supply

$\mathrm{H}=100$ to $240 \mathrm{~V} \approx$ ($\mathrm{ac} / \mathrm{dc}$)

Output 1A

C = Open collector/switched dc
$F=$ Process, 0 to 5 , 1 to 5,0 to $10 \mathrm{~V}=$ (dc), 0 to $20 \mathrm{~mA}, 4$ to 20 mA
$\mathrm{K}=$ Solid-state Form A $0.5-\mathrm{amp}$ relay
Output 1B
A = None
C = Open collector/switched dc
$F=$ Process, 0 to 5 , 1 to 5,0 to $10 \mathrm{~V}=$ (dc), 0 to $20 \mathrm{~mA}, 4$ to 20 mA
$\mathrm{K}=$ Solid-state Form A 0.5 -amp relay
Auxiliary Input Module
$0=$ None
6 = Dual universal inputs
Auxiliary Retransmit Module
$0=$ None
$1=$ Single retransmit output 0 to 5,1 to 5 , 0 to $10 \mathrm{~V}=$ (dc), 0 to $20 \mathrm{~mA}, 4$ to 20 mA
2 = Dual retransmit outputs 0 to 5 , 1 to 5 , 0 to $10 \mathrm{~V}=$ (dc), 0 to $20 \mathrm{~mA}, 4$ to 20 mA
Language and RTD Options
1 = English with 100 w RTD
2 = German with 100 w RTD
3 = French with 100 w RTD
4 = Spanish with 100 w RTD
5 = English with 500 and 1 kw RTD
$6=$ German with 500 and 1 kw RTD
7 = French with 500 and 1 kw RTD
8 = Spanish with 500 and 1 kw RTD
Display and Custom Options
RG = Standard Display (Red/Green display only)
XX = Custom options: software, setting parameters, overlay

1/4 DIN Dual-Channel Ramping Controller

Series F4

¼ DIN, Dual-Channel
Ramping Controller
Dual-Channel

Ramping Controller

3 universal analog inputs, 4 digital inputs, 8 digital outputs, 2 alarms,
EIA-232/485 comms
Power Supply
$\mathrm{H}=100$ to $240 \mathrm{~V}=(\mathrm{ac} / \mathrm{dc})$

Output 1A

C = Open collector/switched dc
$F=$ Process, 0 to 5 , 1 to 5,0 to $10 \mathrm{~V}=$ (dc), 0 to $20 \mathrm{~mA}, 4$ to 20 mA
$\mathrm{K}=$ Solid-state Form A 0.5 -amp relay
Output 1B
A = None
C = Open collector/switched dc
$\mathrm{F}=$ Process, 0 to 5,1 to 5,0 to $10 \mathrm{~V}=(\mathrm{dc}$), 0 to $20 \mathrm{~mA}, 4$ to 20 mA
$\mathrm{K}=$ Solid-state Form A 0.5 -amp relay
Output 2 A
C = Open collector/switched dc
$F=$ Process, 0 to 5,1 to 5,0 to $10 \mathrm{~V}=(\mathrm{dc})$, 0 to $20 \mathrm{~mA}, 4$ to 20 mA
$\mathrm{K}=$ Solid-state Form A 0.5 -amp relay
Output 2 B
A = None
C = Open collector/switched dc
$F=$ Process, 0 to 5,1 to 5,0 to $10 V=(\mathrm{dc})$, 0 to $20 \mathrm{~mA}, 4$ to 20 mA
$\mathrm{K}=$ Solid-state Form A 0.5-amp relay
Auxiliary Retransmit Module
0 = None
1 = Single retransmit output 0 to 5,1 to 5 , 0 to $10 \mathrm{~V}=$ (dc), 0 to $20 \mathrm{~mA}, 4$ to 20 mA
$2=$ Dual retransmit outputs 0 to 5,1 to 5 , 0 to $10 \mathrm{~V}=$ (dc), 0 to $20 \mathrm{~mA}, 4$ to 20 mA
Language and RTD Options
1 = English with 100 w RTD
$2=$ German with 100 w RTD
3 = French with 100 w RTD
$4=$ Spanish with 100 w RTD
5 = English with 500 and 1 kw RTD
$6=$ German with 500 and 1 kw RTD
7 = French with 500 and 1 kW RTD
8 = Spanish with 500 and 1 kW RTD
Display and Custom Options
RG = Standard Display, (Red/Green display only)
XX = Custom options: software, setting parameters, overlay

Index

${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C} 5.7$

A

A to D 10.3
accuracy A. 6
Action, End 4.15
active output indicator lights 2.2
add step 4.6
Address 5.14, 7.16
agency approvals A. 6
Alarm 1 High Deviation 3.14
Alarm 1 High SP 3.14
Alarm 1 Low Deviation 3.14
Alarm 1 Low SP 3.14
Alarm 2 High Deviation 3.14
Alarm 2 High SP 3.14
Alarm 2 Low Deviation 3.14
Alarm 2 Low SP 3.14
alarm band example 5.5
alarm clearing 3.4
Alarm High Set Point 3.4
Alarm Hysteresis 5.12, 6.8
Alarm Latching 5.12, 6.9
Alarm Logic 5.12
Alarm Low Set Point 3.4
alarm messages 3.8
Alarm Messages 5.12
Alarm Name 5.12
alarm output indicator lights 2.2
Alarm Output x Menu 5.12
Alarm Set Point Menu 3.14
alarm set points $3.4,3.14,6.8,8.3$
Alarm Sides 5.12, 6.9, 7.2
Alarm Silencing 5.12, 6.9
Alarm Source 5.12
alarm status, indicator lights 2.2
Alarm Type 5.12
alarms
deviation 3.4, 6.8
features 6.8-6.9
operation 3.4
process 3.4, 6.8
self-clearing 6.9
troubleshooting 3.8
Altitude 5.9
Alternating Display 5.15
ambient temperature A. 6
Analog Input x
A To D, Diagnostics 10.3
Calibration Offset 5.10

Decimal 5.9, 7.2
Deviation Cascade High Range 5.10

Deviation Cascade Low Range 5.10
Error Latch 5.10
Filter Time 5.10
Open Loop 5.7
Process Cascade High Range 5.10
Process Cascade Low Range 5.10
Sensor 5.8
Type 5.8
Units 5.9
Wait for 4.14
Analog Input x Menu 5.8
Analog Range, Retransmit Output 5.12

Automatic Operation 3.1
automatic tuning 3.5, 3.6
Autostart Menu 4.2, 4.12
Date 4.12
Day 4.12
Time 4.12
Autostart Profile Date Or Day 4.12
autostart step application 7.19
Autotune, selecting set points 3.4
Autotune PID Cascade Menu 3.11
Autotune PID Menu 3.4-3.5, 3.11
autotuning 3.4-3.5, 6.7
cascade 3.6
lockout 8.3
operation 3.4, 3.11, 6.7
PID Autotune 3.4, 3.11, 6.7
Autotuning Channel x 2.8, 3.4, 5.7

B

B\&B Converter 12.11
Battery A. 2
Baud Rate 5.14, 7.16
Boost Cool, Digital Output Function 6.10

Boost Heat, Digital Output Function 6.10

Boost Percent Power 5.13, 6.10
Boost Time Delay 5.13, 6.10
burst fire 6.6
heater life 6.6
noise generation (RFI) 6.6
sine wave 6.6

C

Calibration, overview 9.1
inputs 9.2-9.4
outputs 9.4-9.6

Calibration Offset 5.10, 6.2
Cascade 6.11, 7.3
Analog Input 35.10
Autotuning 3.6
cascade system 3.6, 6.11
cascade system, tuning 3.6
control, selecting 3.6
inner loop 3.6, 6.11
internal set point 6.11
long lag times 6.11
outer loop 3.6, 6.11
overshoot 3.6, 6.11
parameters 3.13-3.14
PID 6.11
setup 3.6
Cascade High Range
Deviation 5.10
Process 5.10
Cascade Inner Loop 3.11
Cascade Low Range
Deviation 5.10
Process 5.10
Cascade Outer Loop 3.11
CE Declaration of Conformity A. 5
Ch2 Output Disable? 5.9
changing and setting password 8.2
Channel 1, PID Set 4.15
Channel 2, PID Set 4.15
Channel x Autotune 3.11
Channel x Autotune Set Point 5.7
charts
Custom Main Page 5.3
Operations Page Record 3.15
Setup Page Record 5.16
User Profile Record 4.7
Choose Cycle Time, Control Output x 5.11

Choose Scaling 5.9
CJCx A to D, Diagnostics 10.3
CJCx Temp, Diagnostics 10.3
clear alarm, key press simulation 3.4, 7.3
clear error, key press simulation 3.4, 7.3

Clear Locks, Set Lockout 8.3
closed-loop configuration 3.1
closed-loop control, see automatic operation
CMC converter 12.11
communications 5.14, 7.1, 7.16
communications indicator light 2.2
Communications Menu 5.14, 7.16
communications wiring

B\&B converter 12.11
CMC converter 12.11
EIA-232 to EIA-485 conversion 12.11

EIA/TIA 48512.10
EIA/TIA 23212.10
termination for EIA-232 to EIA-485 converter 12.10
Complementary Output, Digital Output 5, Function 5.13
Compressor Control 6.10
Compressor Off \% Power 5.14, 6.10
Compressor Off Delay 5.14, 6.10
Compressor On \% Power 5.14, 6.10
Compressor On Delay 5.14, 6.10
Condition, Digital Input x 5.11
conformity A. 5
continue profile 3.3
Control Output Function 5.10, 12.7
Control Output x Menu 3.5, 5.11
controller, overview 1.1
cooling compressor 6.10
creating a profile application 7.18
Current Date 5.7
Current Process Input, Calibration 9.3

Current Time 5.7
cursor 2.2
Custom Main Page Menu 5.15
Custom Main Page Record 5.3
Custom Message 1 to 47.3
customizing the Main Page 5.2
Cycle Time 5.11
cycle time adjustment 3.5

D

Dead Band 3.5, 3.12, 3.13, 6.5
Cascade Inner Loop 3.12
Cascade Outer Loop 3.13
integral action 6.5
PID set 3.13, 6.4-6.5
PID Set 1 to 53.12
PID Set 6 to 103.13
proportional action 6.5
Decimal 5.9
Declaration of Conformity A. 5
default Main Page parameters 2.3, 2.8

Delete Profile 4.6
Delete Step 4.6
Derivative 3.11, 3.12, 3.13
derivative rate adjustment 3.5
deviation alarm 3.4
diagnostics
overview 10.1
menu map 10.1
Digital Inputs x 5.10-5.11, 6.3
Condition 2.3, 2.8, 5.10, 5.11
Function 5.11
Name 5.10
number of 1.1
see, event input
specifications A. 6
status 2.3, 2.8
wiring 12.6
Digital Outputs x
condition 2.3, 2.8
Function 5.13
Name 5.13
number of 1.1
see, event output
specifications A. 6
wiring 12.9
dimensions 11.1-11.2
Display Test 10.4
displays 2.2-2.4
cursor 2.2
front panel 2.2
Lower Display 2.2
scroll bar 2.2
Upper Display 2.2
displays, overview 2.1
dry bulb 5.8
dual channel 1.1
dwell - see soak, soak step

E

edit PID 3.4, 3.11
Edit PID Menu 2.5, 3.4-3.5, 3.11-3.12
edit profile 4.6
End step 4.3, 4.15
action, end step 4.6
Idle Set Point, Channel x 4.16
Enter Cycle Time 5.11
Enter In1 Temp High 5.9
Enter In1 Temp Low 5.9
enter key 2.6
environmental testing 1.2-1.3
Error Latch, Analog Input x 5.10
errors
fatal errors 3.8-3.9
input errors 3.8-3.9
operation 3.8-3.9
system errors 3.8-3.9
troubleshooting 3.8-3.9
event input 4.13, 6.3
see, Digital Input x
event output, ramp rate or ramp time
or soak steps 4.12
see, Digital Output x

F

Factory Page 2.1, 8.1, 9.1, 10.1 lockout 8.3
parameter table 9.7
Fahrenheit scale 5.1
Filter Time 5.10, 6.2
filter time constant 6.2
Frequently Asked Questions 4.10
Full Access 8.1, 8.3
Full Default 10.1, 10.4
Function
Control Output x 5.11
Digital Input x 5.11
Digital Output x 5.13

G

global system parameters 5.4
Guarantee Soak 4.3
Guarantee Soak Band x 5.7
Guarantee Soak, ramp rate or ramp time or soak steps 4.13
guided setup and programming 2.5

H

High Power Limit 5.6, 5.11
High Scale 5.13, 6.3
Hold 3.3, 4.5
hold profile 3.3
holdback, see guaranteed soak
hours remaining, ramp time or soak step, current profile status 4.13

Hysteresis 6.4
boost heat \& cool 6.10
Cascade Inner Loop 3.12
Cascade Outer Loop 3.14
PID Set 1 to 53.12
PID Set 6 to 103.13

I

"i" key 1.4, 2.4, 2.7
Idle 4.5
Idle Set Point 4.5, 4.16
Idle Set Point, Channel x, power out
action 5.7
indicator lights 2.2
Information Key 1.4, 2.4, 2.7
Input 1 Only, Process Display 5.15
Input 1 wiring 12.3
Input 2 wiring $12.4-12.5$
Input 3 wiring $12.4-12.5$
input calibration 9.2-9.4
input errors 3.9
input status 2.8
input wiring 12.3-12.5
Input x Error 2.8
Input x Failure 5.7
input-to-output isolation 12.1
inputs and outputs 1.1
calibration 9.2-9.6
dual-channel Series F4 1.1
single-channel Series F4 1.1
wiring, overview 12.1-12.2
insert step 4.6
installation
dimensions 11.1
installing 11.2
overview 11.2-11.3
tools required 11.2
Integral Reset Adjustment 3.5
Integral x
Cascade Inner Loop 3.11
Cascade Outer Loop 3.13
PID Set 1 to 53.11
PID Set 6 to 103.12
Internal Cascade SP 6.11
isolation barriers 12.1

J

Jump
Count 4.15
Profile 4.15
Repeats 4.15
Step 4.13, 4.15

K

keys
Information Key 1.4, 2.4, 2.7
Left and Right Keys 2.4, A. 17
Profile Key 2.4, A. 17
Up and Down Keys 2.4, A. 17
keys, displays and navigation, overview 2.1, A. 17

L

Latching, Alarm Output x 5.12

Line Frequency 10.3
linearization table 5.8
lockout 8.1-8.3
locks 8.3
Clear Locks 8.3
levels 8.1
Set Lock 8.3
Low Power Limit 5.11
Low Scale 5.12, 6.3
Lower Display 2.2

M

Main Page 2.3, 2.8
Alarm x Condition 2.8
Autotuning Channel x 2.8
Custom Main Page 2.3, 5.2, 5.3
default Main Page 2.3
error messages on 2.3
parameter table 2.8
manual operation, not allowed, 3.1
manual tuning 3.5-3.6
Manufacture Date 10.2
map, software A.16-A. 17
menu and page maps
all A.16-A. 17
Calibration Menu 9.6
Communications Menu 5.14, 7.16
Diagnostics Menu 10.1
Operations Page 3.10
Profiles Page 4.11
Set Lockout Menu 8.2
Setup Page 5.6
Message 1 to 4, Static Message 5.15
Military Standard Test 810D 3.7, 4.8-4.9

Modbus registers
alphabetical listing 7.2-7.10
numerical listing 7.13-7.15
profile parameters 7.10-7.12
Modbus Remote Terminal Unit (RTU) 7.1

Modbus RTU protocol 7.1
Model Number 12.1, A. 7
Model, Diagnostic 10.2
multiple PID sets 3.5, 6.6
multiple tuning procedure 3.5

N

Name
Alarm Output x 5.12
Digital Input x 5.10
Digital Output x 5.13
names, how to enter 2.6
naming
alarm output 2.6, 5.13
digital input 2.6, 5.10
digital output 2.6, 5.12
profiles 2.6, 4.4
navigation 2.4
navigation keys 2.4
noise filter 6.2
non-volatile memory 4.2
numbers, how to enter 2.6

0

On-Off control 6.4
chattering 6.4
Hysteresis x (A or B) 6.4
Proportional Band x (A or B) 6.4
Open Loop Channel x, enable 5.7
Open Loop Detect 6.2
operations
overview 3.1
profile control 3.2
sample application 3.7
Operations Page
map 3.10
Parameter Record 3.15
parameter table 3.11
operator's display, see lower display
ordering information A. 7
Output Calibration 9.4-9.6
output condition, indicators 2.2
Outputs, Event, number of 1.1
outputs $\mathrm{x}(1 \mathrm{~A}, 1 \mathrm{~B}, 2 \mathrm{~A}$ and 2 B$)$
type 10.2
wiring 12.7-12.8

P

P (Parameter) x, Custom Main Page 5.15
page and menu maps
all A.16-A. 17
Calibration Menu 9.6
Communications Menu 5.14, 7.16
Diagnostics Menu 10.1
Operations Page 3.10
Profiles Page 4.11
Set Lockout Menu 8.2
Setup Page 5.6
pages, software 2.1, A.16-A. 17
Panel Lock 5.5
parameter record
Custom Main Page 5.3

Operations Page 3.15
Profile 4.7
Setup Page 5.16
parameter setup order 5.1-5.2
parameter tables
Calibration Menu 9.7-9.8
Communications Menu 5.14, 7.16
Diagnostic Menu 10.2-10.3
Main Page 2.8
Operations Page 3.11-3.14
Profiles Page 4.12-4.16
Set Lockout Menu 8.3
Setup Page 5.7-5.15
Test Menu 10.4
password lock 8.1
password, setting or changing 8.2
pattern - see profile
pause (Hold) profile 4.3
Percent Power Output, status 7.2
PI control 6.5
droop 6.5
Integral 6.5
overshoot 6.5
reset 6.5
PID block, see PID set
PID control 6.5
autotuning 6.8
derivative 6.5
PID parameters, adjusting manually 3.5

PID sets 6.6
PID Units 5.1, 5.7
PID values, defaults 3.4
Power Out Condition 4.3
power wiring 12.2
Power-Out Action 5.7
Power-Out Time 5.7
Process Display 5.15
process input range limits
process input, wiring 12.2
process or deviation alarms 3.4, 6.8
Process Output, Calibration 7.7, 9.4
Output 1 Calibration 7.7, 9.4
Output 2 Calibration 7.7, 9.4
Process, Control Output x 5.11
Profile Action Menu 3.3
profile control 3.2, 5.10
profile indicator light 2.2
Profile Key 2.4, 3.2, 3.3
hold a profile 3.3
resume a profile 3.3
run a profile 3.2
start a profile 3.2
terminate a profile 3.3
profile lockout 7.8, 8.1
profile mode 3.2
profile number 7.12
profile plan checklist 4.3
profile programming
editing a profile 4.6
frequently asked questions 4.10
Modbus flowcharts 7.17-7.26
new profile 4.4
overview 4.1
procedures 7.17-7.26
Profiles Page parameters 4.12-4.16
sample profile 4.8-4.9
step types $4.2-4.3,4.12,4.16$
User Profile Record 4.7
profile Modbus registers 7.10-7.12
Profile Status message 3.2
profile wait for, analog input x or event x 4.13
profile, defined 4.2
Profiles Page 4.4
create profile 4.4
edit profile 4.6
map 4.11
programming new profile 4.4-4.5
Proportional Band x 6.4
adjustment 3.5
Cascade Inner Loop 3.11
Cascade Outer Loop 3.13
PID Set 1 to 53.11
PID Set 6 to 103.12
proportional control 6.4
droop 6.4
proportional plus integral (PI) control 6.5
droop 6.5
integral 6.5
overshoot 6.5
reset 6.5
proportional plus integral plus derivative (PID) control 6.5
derivative 6.5
PV bias, see calibration offset

Q

questions 4.10

R

Ramp Rate 4.2, 4.12-4.13
Ramp Set Point Channel x 4.13
ramp steps, number of 1.1
Ramp Time 4.12-4.13
ramping mode 3.2
ramping profile 4.2
range high 6.3
range low 6.3
Rate 6.5
Cascade Inner Loop 3.12
Cascade Outer Loop 3.13
PID Set 1 to 53.11
PID Set 6 to 103.12
read only 8.1
real-time clock 1.1
recipe -see file or profile
Records
Custom Main Page 5.3
Operations Page Record 3.15
Profile Page Record 4.7
Setup Page Record 5.15
reference compensator 9.2
registers
Modbus 7.2-7.15
profile 7.10-7.12
relative humidity (RH) 5.5
removing the controller 11.3
renaming profiles, see naming, profiles
Reset 6.5
Cascade Inner Loop 3.11
Cascade Outer Loop 3.13
PID Set 1 to 53.11
PID Set 6 to 103.12
resistance temperature detector (RTD) 5.4
restore factory calibration values 9.1
Resume Profile 3.3
retransmit outputs
calibration 9.5-9.6
diagnostics 10.3
wiring 12.8
Retransmit Source 5.12
retransmitting 6.3
chart recorder 6.3
outputs 1 and 26.3
remote set point 6.3
Rotronics 5.8
RTD 5.4, A. 6
input, calibration 9.2
inputs, wiring 12.3-12.4

\mathbf{S}

safety info ii
sample application, enviroonmental
testing 1.2-1.3, 3.7, 4.8-4.9, 5.4-5.5

Scale High 5.9, 6.3
Scale Low 5.9, 6.3
Scale Offset 5.13
scroll bar 2.2
security and locks, overview 8.1
full access 8.1
hidden 8.1
password 8.1
read-only 8.1
security levels 8.1
segment -see step
self-clearing alarm 6.9
self tune - see autotune
sensor installation guidelines 12.2
accuracy ranges A. 6
process input wiring 12.3-12.5
RTD input wiring 12.3-12.5
thermocouple input wiring 12.3-12.5

Sensor, Analog Input x 5.8
serial number, diagnostics 10.2
Set Lockout Menu map 8.2
Set Point
Channel x, ramp or soak 4.13
High Limit 5.10, 6.3
Lockout 8.1
Low Limit 5.9, 6.3
set point, autotuning 3.4
set point, beginning percentage 3.4
set points, cooling dead band 3.5
set points, heating dead band 3.5
set variable, see setpoint
setting and changing password 8.2
setting lock levels 8.1
Clear Locks 8.3
Factory Page 8.1
Operations 8.1
Password 8.2, 8.3
Profile Page 8.1
Set Point 8.1
Setup Page 8.1
settings 2.5
change 2.5
program 2.5
set up 2.5
setup steps 1.4
Setup, overview 5.1
customizing the Main Page 5.2
parameter record 5.16
parameter setup order 5.1
parameter table 5.7-5.15
sample application 5.4-5.5
setup guidelines 5.1
Setup Page Map 5.6
Show ${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C} 5.7$
silence, alarm 5.12, 6.9
Silencing, Alarm Output x 5.12
single channel 1.1
Soak Step 4.3
Soak Step Time 4.13
software map A.16-A. 17
Software Number 10.2
software, page and menu maps
Calibration Menu 9.6
Diagnostics Menu 10.2
Operations Page 3.10
Profiles Page 4.11
Set Lockout Menu 8.2
Setup Page 5.6
solenoid valve 5.4
solid-state relay 5.4, 12.7
SP High Limit 5.10, 6.3
SP Low Limit 5.9, 6.3
specifications A. 6
Static Message 5.15
static set point 3.1
step types $4.2-4.3$
Autostart 4.2
End 4.3
Jump 4.3
Ramp Rate 4.2
Ramp Time 4.2
Soak 4.3
stop bit 3.9
system errors 3.9
System Menu 3.4, 5.7
Systeme Internationale (SI) 5.1

\mathbf{T}

technical assistance ii
temperature scale (${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$) 5.1, 5.7
terminals A. 6
terminate profile 3.3
test menu map 10.1
Test Outputs 10.1, 10.4
thermocouple 5.8, A. 6
thermocouple compensator 9.2
thermocouple input
calibration 9.2
wiring 12.2-12.4
Time 4.13
time, setting current 5.1
transformer isolation 12.1

\mathbf{U}

U.S. units 5.1, 5.7

Units
Analog Input 5.9
input measurement 5.9
PID 5.7
SI, U.S. 5.1, 5.7
upper display 2.2
use password 8.2
user ramp chart 4.7

V

Vaisala 5.5, 5.8
values, enter 2.5
Variable Burst, Cycle Time 5.10
voltage process input, calibration 9.3

W

wait for event 4.3
warranty ii
wet bulb 5.8
wiring example 12.12
wiring, overview 12.1

$\mathbf{X , Y , \mathbf { Z }}$

zero-cross switching 6.6
heater life 6.6
noise generation (RFI) 6.6
sine wave 6.6

List of Figures

Chapter 1
Single-Channel Series F4 Inputs/Outputs 1.1a
Dual-Channel Series F4 Inputs/Outputs 1.1b
Sample Application: Environmental Testing 1.2-1.3
Chapter 2
Series F4 Displays and Indicator Lights 2.2
Default Main Page Parameters 2.3
Series F4 Keys and Navigation 2.4
How to Enter Numbers and Names 2.6
The Information Key 2.7
Chapter 3
Sample Application: Running a Profile 3.7
Chapter 4
Eight-Step Profile 4.2
Sample Application: Programming a Profile 4.8
Profile Chart for Military Standard 810D Test 4.9a
Graph of Military Standard 810D Test 4.9b
Chapter 5
Parameters on the Custom Main Page 5.2
Sample Application: Setup 5.4-5.5
Chapter 6
Calibration Offset 6.2a
Filtered and Unfiltered Input Signals 6.2b
Sensor Ranges 6.3a
On-off Control for Heating and Cooling 6.4a
Proportional Control 6.4b
Proportional Plus Integral Control 6.5a
PID Control 6.5b
Cooling Dead Band 6.5c
Burst Fire 6.6
Autotuning 6.7
Alarm Settings 6.8
Alarm Latching 6.9a
Alarm Silencing 6.9b
Boost Heat and Boost Cool 6.10a
Compressor Power 6.10b
Control Lag Times 6.11a
Cascade Control 6.11b
Cascade Example 6.11c
Chapter 11
Front View Dimensions and Gap Dimension11.1a
Side and Top View and Dimensions 11.1b
Multiple Panel Cutout Dimensions 11.2a
Gasket Seated on the Bezel 11.2b
Retention Collar and Mounting Bracket 11.3a
Tightening the Screws 11.3b
Disengaging the Mounting Bracket 11.3c
Chapter 12
Isolation Blocks 12.1
Power Wiring 12.2
Input 1, Thermocouple 12.3a
Input 1, RTD (2- or 3-Wire) 100Ω Platinum 12.3b
Input 1, 0 to $5 \mathrm{~V}=$, 1 to $5 \mathrm{~V}=$ or 0 to $10 \mathrm{~V}=$ Process12.3c
Input 1, 0 to 20 mA or 4 to 20 mA Process 12.3d
Input 1, 0 to 50 mV 12.3e
Input 2 \& 3, Thermocouple 12.4a
Input 2 \& 3, RTD (2-wire) 100Ω Platinum 12.4b
Input 2 \& 3, RTD (3-wire) 100Ω Platinum 12.4c
In. $2 \& 3,0$ to $5 \mathrm{~V}=, 1$ to $5 \mathrm{~V}=$ or 0 to $10 \mathrm{~V}=$ Process 12.5 a
Input 2 and 3,0 to 20 mA or 4 to 20 mA Process 12.5 b
Input 2 \& 3,0 to 50 mV 12.5c
Digital Inputs 1 to 4 12.6
Output x, Solid-state Relay 12.7a
Output x, Switched DC, Open Collector 12.7b
Output x, 0 to $20 \mathrm{~mA}, 4$ to $20 \mathrm{~mA}, 0$ to $5 \mathrm{~V}=$, 1 to $5 \mathrm{~V}=$ and 0 to $10 \mathrm{~V}=$ (dc) Process 12.8a
Retransmit Outputs 1 and 2 12.8b
Alarm Outputs 1 and 2 12.8c
Digital Outputs 1 to 8 12.9a
Digital Output, Open Collector Example 12.9b
Digital Output, Switched DC Example 12.9c
EIA/TIA 485 and 232 Communications 12.10a
Termination for EIA-232 to -485 Converter 12.10b
EIA/TIA-232 Connections 12.10c
EIA-232 to EIA-485 Conversion 12.11a
GPIB Conversion to EIA-232 or EIA-485 12.11b
System Wiring Example 12.12

Series F4 Software Map

For ranges, defaults, Modbus numbers and other information about the parameters, refer to the
Parameter Tables in the chapters noted below.

Main Page see Chapter 2

Input x (1 to 3) Error
Alarm x (1 to 2) Condition
Autotuning Ch x (1 to 2)
Parameter x (1 to 16)
Current File
Current Step
Input 2 Value
Set Point 1
Set Point 2
Step Type
Target SP1
Target SP2
Wait for Status
Time Remaining
Digital Ins
Digital Outs
\% Power 1
\% Power 2
Date
Time
Go to Operations
Go to Profiles
Go to Setup
Go to Factory

Operations Page

see Chapter 3
Autotune PID
Channel 1 Autotune
Tune 0ff
PID Set x (1 to 5)
Channel 2 Autotune
Tune Off
PID Set x (6 to 10)
Edit PID
PID Set Channel 1
PID Set x (1 to 5)
PID Set Channel 2
PID Set x (6 to 10)
Proportional BandA Integral A / ResetA Derivative A / RateA Dead Band A Hysteresis A Proportional Band B Integral B / ResetB Derivative B / RateB Dead Band B Hysteresis B
Alarm Set Points
Alarm1
Alarm1 Lo Deviation Alarm1 Hi Deviation
Alarm2 Low SP Alarm2 Low SP Alarm2 High SP

Profiles Page

see Chapter 4
Create Profile
Name Profile
Step x (1 to 256) Type
Autostart
Date
Day
Ramp Time
Wait For
Event Output
Time
Ch1 SP
Ch2 SP
Ch1 PID Set x (1 to 5)
Ch2 PID Set x (6 to 10)
Guarantee Soak1
Guarantee Soak2
Ramp Rate
Wait For
Event Output
Rate
Ch1 SP
Ch2 SP
Ch1 PID Set x (1 to 5)
Guarantee Soak1
Ch2 PID Set x (6 to 10)
Guarantee Soak2
Soak
Wait For
Event Output
Time
Ch1 PID Set x (1 to 5)
Guarantee Soak1
Ch2 PID Set x (6 to 10)
Guarantee Soak2
Jump
Jump to Profile x (1 to 40)
Jump to Step x
Number Of Repeats End

Hold
Control Off
All Off
Idle

Edit Profile
Profile x (1 to 40)
Insert Step x (1 to 256)
Insert Before Step x
Step x Type (see below)
Edit Step
Step x Type
Autostart
Date
Day
Ramp Time
Wait For
Event Output
Time
Ch1 SP
Ch2 SP
Ch1 PID Set x
(1 to 5)
Guarantee Soak1
Ch2 PID Set x
(6 to 10)
Guarantee Soak2
Ramp Rate Wait For Event Output Rate
Ch1 SP Ch2 SP Ch1 PID Set x
(1 to 5) Guarantee Soak1 Ch2 PID Set x
(6 to 10) Guarantee Soak2
Soak
Wait For
Event Output
Time
Ch1 PID Set x
(1 to 5) Guarantee Soak1 Ch2 PID Set x
(6 to 10) Guarantee Soak2
Jump
Jump to Profile
x (1 to 40)
Jump to Step x Number Of Repeats End Hold Control Off All Off Idle
Delete Step
Done
Delete Profile x (1 to 40)
Re-Name Profile x (1 to 40)

Setup Page see Chapter 5

```
System
    Guar. Soak Band1
    Guar. Soak Band2
    Current Time
    Current Date
    PID Units
    OF or o}\mp@subsup{}{}{\circ
    Show }\mp@subsup{}{}{\circ}\textrm{F}\mathrm{ or }\mp@subsup{}{}{\circ}\textrm{C
    Ch1 Autotune SP
    Ch2 Autotune SP
    Input 1 Fail
    Input 2 Fail
    Open Loop Ch1
    Open Loop Ch2
    Power-Out Time
    Power-Out Action
Analog Input x (1 to 3)
    Sensor
    Type
    Decimal
    Altitude
    Units
    Scale Low
    Scale High
    Choose Scaling
    Ch2 Output Disable?
    Enter In1 Temp Low
    Enter In1 Temp High
    SP Low Limit
    SP High Limit
    Calibration Offset
    Filter Time
    Error Latch
    Cascade
Digital Input x (1 to 4)
    Name
    Function
    Condition
Control Output x (1A, 1B,
        2A, or 2B)
    Function
```


Factory Page

see Chapters 8, 9, 10
Set Lockout
Set Point
Oper.Autotune PID
Oper. Edit PID
Oper. Alarm SP
Profile
Setup
Factory
Change Password
Clear Locks
Diagnostic
Mode1
Mfg Date
Serial 非
Software 非
Revision
Inx (1 to 3)
Out x (1A, 1B, 2A, or 2B)
Retrans x (1 or 2)
In x (1 to 3) AtoD
CJC x (1 or 2) AtoD
CJC x (1 or 2) Temp
Line Freq
Test
Test Outputs
Display Test
Full Defaults
Calibration
Calibrate Input x (1 to 3)
Calibrate Output x (1A,
1B, 2A, or 2B)
Calibrate Rexmit x (1 or 2)

Restore In x (1 to 3) Cal

\checkmark NOTE:

Some parameters may not appear, depending on the controller model and how it is configured. Some menus may not appear if the controller has already been installed in equipment and the manufacturer has locked out portions of the software.

How to Reach Us

Corporate Headquarters

Watlow Electric Manufacturing Company 12001 Lackland Road
St．Louis，MO 63146
Sales：1－800－WATLOW2
Manufacturing Support：1－800－4WATLOW
Email：info＠watlow．com
Website：www．watlow．com
From outside the USA and Canada：
Tel：＋1（314）878－4600
Fax：＋1（314）878－6814

Latin America

Watlow de México S．A．de C．V．
Av．Fundición No． 5
Col．Parques Industriales
Querétaro，Qro．CP－76130
Mexico
Tel：＋52 442 217－6235
Fax：＋52 442 217－6403

Europe

Watlow France
Tour d＇Asnières．
4 Avenue Laurent Cély
92600 Asnières sur Seine
France
Tél：＋ 33 （0）1 41327970
Télécopie：＋33（0）14733 3657
Email：info＠watlow．fr
Website：www．watlow．fr
Watlow GmbH
Postfach 11 65，Lauchwasenstr． 1
D－76709 Kronau
Germany
Tel：＋49（0） 7253 9400－0
Fax：＋49（0） 7253 9400－900
Email：info＠watlow．de
Website：www．watlow．de
Watlow Italy S．r．I．
Viale Italia 52／54
20094 Corsico MI
Italy
Tel：＋39 024588841
Fax：＋39 0245869954
Email：italyinfo＠watlow．com
Website：www．watlow．it

Asia and Pacific

Watlow Singapore Pte Ltd．
16 Ayer Rajah Crescent， \＃06－03／04，
Singapore 139965
Tel：＋65 67739488
Fax：＋65 6778
0323
Email：info＠watlow．com．sg
Website：www．watlow．com．sg
Watlow Australia Pty．，Ltd．
4／57 Sharps Road
Tullamarine，VIC 3043
Australia
Tel：＋61 393356449
Fax：＋61 393303566
Website：www．watlow．com
Watlow Electric Manufacturing Company （Shanghai）Co．Ltd．
Room 501，Building 10，KIC Plaza
290 Songhu Road，Yangpu District
Shanghai，China 200433
China
Phone：
Local： 4006 Watlow（4006 928569）
International：＋86 2133810188
Fax：＋86 2161061423
Email：vlee＠watlow．cn
Website：www．watlow．cn

ワトロー・ジャパン株式会社
〒101－0047 東京都千代田区内神田1－14－4
四国ビル別館9階
Tel：03－3518－6630
6632
Email：infoj＠watlow．com Website：
www．watlow．co．jp
Watlow Japan Ltd．
1－14－4 Uchikanda，Chiyoda－Ku
Tokyo 101－0047
Japan
Tel：＋81－3－3518－6630 Fax：＋81－3－
3518－6632
Email：infoj＠watlow．com Website：
www．watlow．co．jp
Watlow Korea Co．，Ltd．
\＃1406，E\＆C Dream Tower，46，
Yangpyeongdong－3ga
Yeongdeungpo－gu，Seoul 150－103
Republic of Korea
Tel：＋82（2）2628－5770 Fax：＋82（2）
2628－5771
Website：www．watlow．co．kr
Watlow Malaysia Sdn Bhd
1F－17，IOI Business Park
No．1，Persiaran Puchong Jaya Selatan
Bandar Puchong Jaya
47100 Puchong，Selangor D．E．
Malaysia
Tel：＋60 380768745 Fax：＋60 3
80767186
Email：vlee＠watlow．com

Watlow Ibérica，S．L．U．
C／Marte 12，Posterior，Local 9
E－28850 Torrejón de Ardoz
Madrid－Spain
T．＋34 916751292
F．+34916487380
Email：info＠watlow．es
Website：www．watlow．es
Watlow UK Ltd．
Linby Industrial Estate
Linby，Nottingham，NG15 8AA
United Kingdom
Telephone：（0） 1159640777
Fax：（0） 1159640071
Email：info＠watlow．co．uk
Website：www．watlow．co．uk
From outside The United Kingdom：
Tel：＋44 1159640777
Fax：＋44 1159640071

Website：www．watlow．com
瓦特龍電機股份有限公司
80143 高雄市前金區七賢二路189號10樓之一
電話：07－2885168傳真：07－2885568
Watlow Electric Taiwan Corporation
10F－1 No． 189 Chi－Shen 2nd Road
Kaohsiung 80143
Taiwan
Tel：＋886－7－2885168 Fax：＋886－7－ 2885568

Your Authorized Watlow Distributor

[^0]: *This section is also applicable for Cascade Inner Loop.
 \checkmark NOTE: For more information about how parameter settings
 affect the controller's operation, see the Features Chapter.

[^1]: $\boldsymbol{\sim}$ NOTE: Two sets of Modbus registers contain profile information: In edit mode, the number of the profile being edited is at 4000 , and the number of the step being edited is at 4001. When the profile is running, the number of the profile being run is at 4100, and the number of the step being run is at 4101. All run addresses are read only.

[^2]: \checkmark NOTE:

[^3]: $\boldsymbol{\sim}$ NOTE: Press the Information Key $\mathbf{~}$ for more task-related tips.

