Coil/Cable Heaters

The versatile Watlow coil/cable heater can be formed into a variety of shapes. Small diameter, high performing cable heaters are fully annealed and readily bent to a multitude of configurations.

The heater can be formed into a compact, coiled nozzle heater supplying a full 360 degrees of heat with optional distributed wattage. A straight cable heater can snake through an equipment application. Flat, spiral configurations can be used in high-tech manufacturing while a star wound cable can be used for air and gas heating.

Different applications require different construction methods, including one, two or four resistance wires; parallel coil or straight wire; drawn or swaged sheaths; with or without internal thermocouples; leads exiting from one or both ends, and round, rectangular or square cable cross sectionals.

Whatever the application requirement, a Watlow coil/cable heater can be shaped to fit.

Performance Capabilities

- Continuous operating temperatures up to 1200°F (650°C) with intermittent operating periods achieving up to 1500°F (815°C) dependent on the type of element wire used
- Sheath watt densities on the cable up to 30 W/in² (4.65 W/cm²), and as high as 75 W/in² (11.62 W/cm²) subject to factory approval
- Maximum voltage up to 240V

Features and Benefits

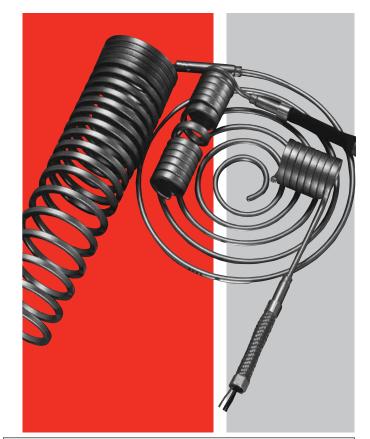
High ductility

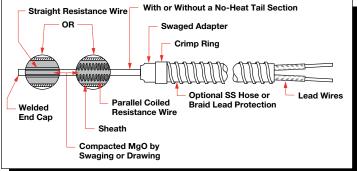
• Allows the heater to be cold-formed into almost any shape

Low mass

• Allows quick response in both heating and cooling

Constructed with no open seams


- Capable of operating in unusual environments, including cryogenic and sub-freezing temperatures, high vacuum, gaseous and liquid immersion heaters
- Decreases opportunity for corrosion


Constructed of standard 304 stainless steel, optional 316 stainless steel or alloy 600

• Provides high temperature corrosion and oxidation resistance along with ideal expansion properties

Heater sheath can be brazed

• Allows the permanent attachment of mounted fittings to the heater, contact your Watlow representative

Sizes range from 0.040 in. (1.02 mm) to 0.188 in. (4.8 mm) diameter

- Delivers a high volume of heat into a tiny space **Internal construction options**
- Allows for internal thermocouples and no-heat sections (not available in all sizes)

Coil/Cable Heaters

Typical Applications

- Plastic injection molding nozzles
- Semiconductor manufacturing and wafer processing
- Hot metal forming dies and punches
- Sealing and cutting bars
- Medical, analytical and scientific instruments

- Restaurant and food processing equipment
- Cast-in heaters
- Laminating and printing presses
- Air heating
- Textile manufacturing
- · Heating in a vacuum environment

Electrical Data and Coiling Limits

Sheath Diameter		Max.		Area Per ar Foot		. Bend adius		Coiled Diameter
in.	(mm)	Voltage	in.	(cm)	in.	(mm)	in.	(mm)
0.040 ± 0.002	(1.016 ± 0.051)	48	1.51	(9.740)	¹ /16	(1.6)	1/8	(3.2)
0.062 ± 0.002	(1.575 ± 0.051)	120	2.34	(15.098)	1/8	(3.2)	1/4	(6.0)
0.094 + 0.002 - 0.003	(2.388 + 0.051 - 0.076)	240	3.54	(22.840)	³ /16	(4.8)	³ /8	(9.5)
0.102 square ± 0.003	(2.591 ± 0.076)	240	4.90	(31.615)	1/4	(6.0)	1/2	(13.0)
0.102 ± 0.003 x	(2.591 ± 0.076) x							
0.156 ± 0.005 rectangular	(3.962 ± 0.127)	240	6.19	(39.938)	1/4	(6.0)	1/2	(13.0)
0.125 ± 0.003	(3.175 ± 0.076)	240	4.71	(30.389)	1/4	(6.0)	1/2	(13.0)
0.157 ± 0.004	(3.988 ± 0.102)	240	5.92	(38.196)	⁵ /16	(7.9)	⁵ /8	(15.9)
0.188 + 0.003 - 0.006	(4.775 + 0.076 - 0.152)	240	7.09	(45.745)	³ /8	(9.5)	3/4	(19.0)
0.128 square ± 0.003	(3.251 ± 0.076)	240	6.31	(40.712)	1/4	(6.0)	1/2	(13.0)

In most cases 30 W/in² (4.65 W/cm²) is the safe allowable limit for cable watt density. Please contact your Watlow representative prior to ordering >30 W/in² cables.

Resistance/Wattage Tolerance ±10%.

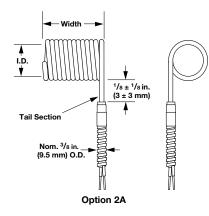
Cable heaters can run on both ac and dc. Contact your Watlow representative for amperage limitations.

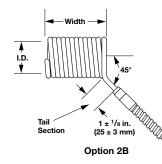
Coiling Tolerances

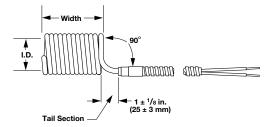
	Coiled	Width Tolerances	Coiled I.D. Tolerances				
Cable	Coiled Width	Tolerances	Coil I.I	D. Range	Tolera	ances	
Diameters	in. (mm)	in. (mm)	in.	(mm)	in.	(mm)	
All Diameters	Below 6 (152)	+ 0 - ¹ /8 (+0.00 - 3.18)	Below 0.625	(Below 15.88)	+0.000 - 0.015	(+0 - 0.38)	
	6 to 10 (152 to 254) + ¹ /8 - ³ /8 (+3.18 - 9.53)	0.625 to 0.999	(15.88 to 25.38)	+0.000 - 0.030	(+0 - 0.76)	
	Over 10 (Over 254)	+ 1/4 - 1/4(+6.35 - 6.35)	1.000 to 1.999	(25 to 50.78)	+0.000 - 0.062	(+0 - 1.58)	
			2.000 to 2.999	(51 to 76.18)	+0.000 - 0.125	(+0 - 3.18)	
			3.000 to 3.999	(76 to 101.58)	+0.000 - 0.250	(+0 - 6.35)	
			4.000 to 4.999	(102 to 126.98)	+0.000 - 0.375	(+0 - 9.53)	
			5.000 and Over	(127 and Over)	+0.000 - 0.500	(+0 - 13.00)	

When the O.D. of the coil is required as the critical dimension, it must be specified at the time of ordering so that proper coiling procedures can be determined. I.D. and O.D. dimensions cannot be held on the same unit. Please contact your Watlow representative prior to ordering coiled cable heaters requiring other than standard tolerances.

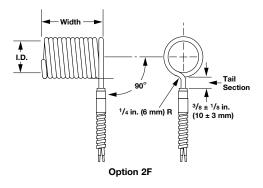
Cable Straight Length Tolerances	Length	≤ 24 in.	>24 in. ≤ 60 in.	>60 in. ≤ 100 in.	>100 in.
	Tolerance	± ³ /8 in.	$\pm^{1/2}$ in.	±1 in.	±1%


Coil/Cable Heaters


Formation Options

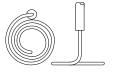

Coil Heaters

The coil heater can be tight wound or open pitch.


Lead Orientation Options for Coiled Cable Heaters



Closed Coil without Distributed Wattage


Closed Coil with Distributed Wattage

Flat Spiral

Flat, spiral formations are used to heat flat circular surfaces. This formation is often used in semiconductor and medical applications.

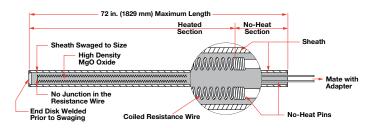
Flat Spiral with 2A Type Lead Orientation Flat Spiral with 2C Type Lead Orientation Flat Spiral with 2F Type Lead Orientation

		Flat Spir	al Inside	Diamete	er Stand	ards	
				Cable	Diamete	er—in.	
			^{1/} 16 (0.062)	³ / ₃₂ (0.094)	¹ /8 (0.125)	^{5/₃₂ (0.156)}	^{3/} 16 (0.188)
	⁵ /8	(0.625)	 Image: A set of the set of the	1	1		
. <u>-</u>	3/4	(0.75)		1	√	√	1
er -	7/8	(0.875)			1	1	
met	1	(1.0)			√	√	 Image: A set of the set of the
Dia	1 ³ /16	(1.187)			1		
de	1 ¹ /4	(1.25)			1		
Spiral Inside Diameter — in.	1 ¹ /2	(1.5)			1	1	1
iral	2	(2.0)			1		
Spi	2 ¹ /2	(2.5)			1		
	3	(3.0)			1	1	1

Note: Maximum outside diameter is 6 inches.

WATLOW®

Coil/Cable Heaters


Formation Options (Continued)

Star Wound

Star wound formations are usually inserted into pipes or ducts and used to heat moving air or liquids. The offset coils increase and induce turbulent flow. This allows the flowing material to have better contact with the heater surface to provide efficient heat transfer.

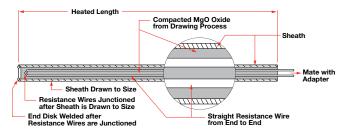
Internal Construction

Sheath with Coiled Internal Resistance Wire

Resistance wire wound into a small coil is loaded into insulating cores, then into metal tubing and swaged to final size. This construction method is called **coil wire or parallel coil.**

The coil method allows for a no-heat section in the sheath. The length of either the heated section or the no-heat section is variable as long as the combined length does not exceed 72 in. (1829 mm). Other features of this construction method include:

- Variable ohms/foot within a minimum and maximum range
- Variable location of the thermocouple junction
- Grounded or ungrounded thermocouple junction
- No-heat sections
- 304 stainless steel
- A variety of diameters and shapes:
 - 0.094 in. (2.4 mm) round

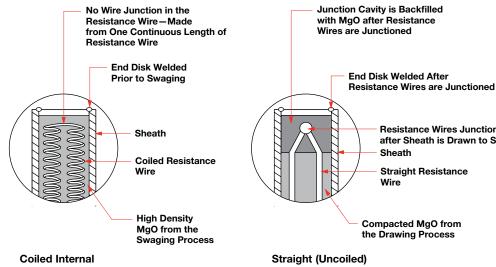

0.125 in. (3.2 mm) round (minimum diameter with internal thermocouple)

0.102 in. (2.6 mm) square

0.128 in. (3.3 mm) square

0.102 in. X 0.156 in. (2.6 mm X 4 mm) rectangular

Sheath with Straight (Uncoiled) Resistance Wire


Straight resistance wires are positioned inside a large diameter metal tube. The tube assembly is repeatedly pulled through draw dies until the desired diameter is achieved. Though limited to fixed incremental ohms/foot and without no-heat sections, this **straight wire or drawn cable** construction method allows:

- Essentially no limit on cable length
- Thermocouple junction only at the disk end of the sheath
- Grounded or ungrounded thermocouple junction
- Full length of the sheath is heated
- 304 stainless steel
- A variety of diameters and shapes:
 - 0.040 in. (1.0 mm) round 0.062 in. (1.6 mm) round 0.094 in. (2.4 mm) round 0.125 in. (3.2 mm) round (minimum diameter with internal thermocouple)
 - 0.157 in. (4.0 mm) round
 - 0.188 in. (4.8 mm) round
 - 0.128 in. (3.3 mm) square*
 - 0.102 in. X 0.156 in.* (2.6 mm X 4 mm) rectangular
- * Maximum length is 140 in. (3556 mm)

Coil/Cable Heaters

Internal Construction (Continued)

Disk End of Sheath

Resistance Wire

The end of the heater sheath opposite from the lead exit end is called the disk end.

With coil construction methods, the internal resistance wires form a 180° bend inside the sheath and do not require a junction. After the end cap has been welded in place, the entire area at the end of the sheath is swaged to provide maximum density of the magnesium oxide (MgO).

Thermocouples

Internal thermocouples are available in ASTM Type J or K calibration with both the coil or straight construction methods.

Coil:

0.125 in. (3.2 mm) round 0.128 x 0.128 in. (3.3 x 3.3 mm) square 0.102 x 0.156 in. (2.6 x 4.0 mm) rectangular

Straight:

0.125 in. (3.2 mm) round 0.157 in. (4.0 mm) round 0.188 in. (4.8 mm) round 0.128 x 0.128 in. (3.3 x 3.3 mm) square 0.102 x 0.156 in. (2.6 x 4.0 mm) rectangular

Compacted MgO from the Drawing Process **Resistance Wire** With straight construction, the internal wires-whether

Sheath

Wire

resistance or thermocouple-must be junctioned before the heater sheath can be finished. MgO is removed from the tip of the sheath to expose the wires which are junctioned by welding. MgO powder is backfilled into the cavity surrounding the junctioned wires and lightly compacted. The end cap is inserted and welded into place.

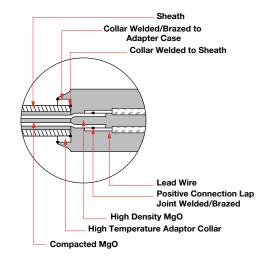
Resistance Wires Junctioned

after Sheath is Drawn to Size

Straight Resistance

Coil/Cable Heaters

Options—Internal Construction


Adapters

Adapters are transition sections where lead wires are attached and connected with the internal wires from the heater sheath.

The **positive connection** lap joint brazes or welds the wire lap joint before the adapter is compacted. Positive connection is used in all standard applications and adds protection in high temperature environments.

An extended length adapter collar, or **high temperature** collar, is used as a heat sink enabling the heater to operate in high temperature, demanding applications.

The positive connection and collar are used in conjunction with both power leads and thermocouple leads.

External Construction

Lead Wire

100 percent nickel, copper, nickel plated copper or silver plated copper.

Insulation

PTFE, fiberglass or a high temperature variety such as MGT or MGE.

Lead Protection

Stainless steel hose, stainless steel braid or fiberglass braid.

Contact your Watlow representative for details.

Coil/Cable Heaters

Cable Heater Units (Internal thermocouple is not available)

L	ght Cable ength . (mm)	Volts	Watts	Watt Density W/in ² (W/cm ²)	No-Heat Length in. (mm)	Lead Wire	Part Number
0.062	in. (1.6 m	m) Diamete	r Round (w	ith ±10% wattage toler	ance) 0.250 in. x 1.1:	25 in. adapter	
24	(610)	120	240	51 (7.9)	0 (0)		62H24A6X-1138
36	(914)	120	400	57 (8.8)	0 (0)		62H36A5X-1015
56	(1422)	120	330	30 (4.7)	0 (0)	swaged-in fiberglass	62H56A4X-942
65	(1651)	120	500	39 (6.0)	0 (0)		62H65A3X-1111
0.094	in. (2.4 m	m) Diamete	r Round (w	ith ±5% wattage tolera	nce) 0.132 in. x 1.25	0 in. adapter- Lead pro	otection not available
30	(762)	230	125	17 (2.6)	5 (127)	48 in. (1219) mm	94PC30A1X
30	(762)	230	250	34 (5.3)	5 (127)	swaged-in PTFE leads only	94PC30A2X
0.125	in. (3.2 m	m) Diamete	r Round (w	ith $\pm 10\%$ wattage toler	ance) 0.250 in. x 1.1:	25 in. adapter, *0.375 in.	x 2.000 in. adapter
18	(457)	240	250	35 (5.4)	1.5 (38)		125CH18A4X-1066
19	(483)	120	165	21 (3.3)	1.5 (38)	—	125CH19A1X-879
24	(610)	120	275	29 (4.5)	1.5 (38)		125CH24A1X-1049
24	(610)	240	275	29 (4.5)	1.5 (38)		125CH24A14X-806
38	(965)	240	325	21 (3.3)	1.5 (38)		125CH38A1X-631
38	(965)	120	175	12 (1.9)	1.5 (38)		125CH38A2X-246
47	(1194)	240	260	14 (2.2)	1.5 (38)	36 in. (914) mm swaged-in fiberglass	125CH47A1X-108
47	(1194)	120	235	12 (1.9)	1.5 (38)	erraged in morigidee	125CH47A2X-182
47	(1194)	120	375	20 (3.1)	1.5 (38)		125CH47A3X-986
47	(1194)	240	345	19 (2.9)	1.5 (38)		125CH47A4X-1081
65	(1651)	240	420	16 (2.5)	1.5 (38)		125CH65A1X-940
65	(1651)	240	675	27 (4.2)	1.5 (38)		125CH65A2X-1115
95	(2413)	240	1000	28 (4.3)	0 (0)		125CH93A1X-1154
126	(3200)	240	1500	30 (4.7)	0 (0)	48 in (1210) mm	125H126A4A-969
150	(3810)	240	2000	34 (5.3)	0 (0)	48 in. (1219) mm swaged-in fiberglass	125H150A3A-1168*
	(5664)	240	3000	34 (5.3)	0 (0)	-	125H223A1A-1057*
0.128	in. (3.3 m	m) Square	Cross-Sect	tion (with ±10% watta	ge tolerance) 0.250 i	n. x 1.125 in. adapter	1
12	(305)	120	200	36 (5.6)	1.5 (38)		125PS12A24A-647
12	(305)	240	200	36 (5.6)	1.5 (38)		125PS12A23A-155
20	(508)	120	300	31 (4.8)	1.5 (38)	06 in (014) mm	125PS20A37A-537
20	(508)	240	300	31 (4.8)	1.5 (38)	36 in. (914) mm swaged-in fiberglass	125PS20A38A-142
30	(762)	120	450	30 (4.7)	1.5 (38)		125PS30A47A-159
30	(762)	240	450	30 (4.7)	1.5 (38)	_	125PS30A48A1019
38	(965)	240	600	31 (4.8)	1.5 (38)		125PS38A23A-562

Note: Lead protection is available upon request.

up to 5 pieces

Coil/Cable Heaters

Cable Heater Units (Type J internal thermocouple)

Straight Cable Length in. (mm)	Volts	Watts	Watt Density W/in ² (W/cm ²)	No-Heat Length in. (mm)	Lead Wire	Part Number
0.125 in. (3.2 m 0.250 in. x 1.125 in.		er Round (w	rith ±10% wattage toler	ance), thermocouple	e located in center of heat	ed section,
24 (610)	120	275	29 (4.5)	1.5 (38)		125CH24A13X
38 (965)	120	175	12 (1.9)	1.5 (38)	48 in. (1219) mm swaged-in fiberglass	125CH38A18X
47 (1194)	120	235	13 (2.0)	1.5 (38)		125CH47A21X
65 (1651)	240	675	26 (4.0)	1.5 (38)		125CH65A26X
0.375 in. x 2.000 in.		1500	25 (3.9)	a (a)		
124 (3150) 150 (3810)	240 240	2000	25 (3.9) 27 (4.2)	0 (0) 0 (0)	48 in. (1219) mm	157CH124AX 157CH150AX
. ,					48 in. (1219) mm swaged-in fiberglass	
150 (3810) 220 (5588) 0.128 in. (3.3 m 0.250 in. x 1.125 in.	240 240 m) Square adapter	2000 3000 Cross-Sec	27 (4.2) 28 (4.3) tion (with ±10% watta	0 (0) 0 (0) age tolerance), therm	()	157CH150AX 157CH220AX of heated section,
150 (3810) 220 (5588) 0.128 in. (3.3 m 0.250 in. x 1.125 in. 12 (305)	240 240 m) Square adapter 240	2000 3000 Cross-Sec 200	27 (4.2) 28 (4.3) tion (with ±10% watta 36 (5.6)	0 (0) 0 (0) age tolerance), therm 1.5 (38)	swaged-in fiberglass	157CH150AX 157CH220AX of heated section, 125PS12A22A
150 (3810) 220 (5588) 0.128 in. (3.3 m 0.250 in. x 1.125 in.	240 240 m) Square adapter	2000 3000 Cross-Sec	27 (4.2) 28 (4.3) tion (with ±10% watta 36 (5.6) 31 (4.8)	0 (0) 0 (0) age tolerance), therm 1.5 (38) 1.5 (38)	48 in. (1219) mm	157CH150AX 157CH220AX of heated section,
150 (3810) 220 (5588) 0.128 in. (3.3 m 0.250 in. x 1.125 in. 12 (305) 20 (508)	240 240 m) Square adapter 240 120	2000 3000 Cross-Sec 200 300	27 (4.2) 28 (4.3) tion (with ±10% watta 36 (5.6) 31 (4.8)	0 (0) 0 (0) age tolerance), therm 1.5 (38) 1.5 (38)	swaged-in fiberglass	157CH150AX 157CH220AX of heated section, 125PS12A22A 125PS20A35A

Note: Lead protection is available upon request.

